Батарея конденсаторов для резонанса

Польза и вред конденсаторных батарей, установок компенсации реактивной мощности. Часть первая

Анонс: польза и условный вред от конденсаторных батарей, установок компенсации реактивной мощности в силовых сетях низкого и среднего напряжения. Броски тока и напряжения при переходных процессах во время коммутации конденсаторных батарей, установок.

Компенсация реактивной мощности в силовых сетях низкого и/или низкого среднего напряжения конденсаторными установками УКРМ, УКРМТ была и, безусловно, остается одним из оптимальных финансово выгодных способов решения проблем нестабильности электроснабжения и больших счетов за электроэнергию. Однако те же УКРМ, УКРМТ или конденсаторные батареи могут ухудшить ситуацию при бездумном выборе только по мощности, интеграции батарей, установок где удобнее и/или технически безграмотном проектировании без энергоаудита, мониторинга параметров качества электросети и учета (условно) негативов, вносимых самими конденсаторными установками повышения коэффициента мощности в силовую сеть.

Так, конденсаторы, модули, батареи и конденсаторные установки большой мощности из-за переходных процессов при коммутациях вызывают скачки тока и напряжения, повышают нагрузку на коммутационные устройства и системы изоляции, зачастую виновны в значительных межфазных напряжениях на трансформаторах ТП, могут нанести ущерб чувствительным нагрузкам и т. д. Вместе с тем, из-за рыночных отношений и специфического маркетинга в нашей стране почти никто из производителей, инсталляторов конденсаторных батарей и установок не дает информации, а возможно и не учитывает при проектировании изменения параметров сети при включении, отключении, пробое силовых конденсаторов, явления первого и второго резонанса, например, при использовании двух батарей, установок до и после понижающего трансформатора, негативное влияние на ШИМ-преобразователи через перенапряжение, системы привода (через увеличение тока самовозбуждения, автоматические выключатели через скачки тока и пр.

Поэтому команда «МИРКОН» предлагает цикл информационных и упрощенных для понимания статей о переходных процессах при коммутации конденсаторов, конденсаторных батарей, установок и способах решения таких проблем в силовых сетях низкого и среднего напряжения еще на этапе проектирования технических средств компенсации реактивной мощности.

Броски тока и напряжения при переходных процессах во время коммутации конденсаторных батарей, установок

Упрощенно в момент подключения через контактор конденсатора, модуля, конденсаторной батареи происходит короткое замыкание с просадкой напряжения в питающей линии и скачком тока, а затем сетевые параметры восстанавливаются преимущественно за счет высокочастотных колебаний, причем:

  • На начальной стадии колебаний амплитуда напряжения может в два раза превышать сетевое, а затухание до номинальных значений происходит за 5-6 и более циклов.
  • Пусковой ток проходит аналогичные колебания, но максимальные амплитуды находятся в высокочастотном спектре, что при условиях резонанса может привести к значениям, в 15-17 раз превышающим номинальные и допустимые, как для самих конденсаторов, так и других силовых элементов сборки и/или оборудования и кабелей в силовой сети.
  • Искажения сетевых параметров при коммутации конденсаторной батареи de facto свободно распространяются по силовой сети, перегенерируются и могут быть усилены, как трансформаторами (особенно в случае, если частота переходного процесса совпадает с частотой индуктивности трансформатора — первичный резонанс), так и конденсаторной батареей/установкой более низкого уровня напряжения в этой линии силовой сети — вторичный резонанс.
  • Положение усугубляется при быстром повторном включении конденсаторах батареи, когда разрядные устройство конденсаторов не успевает снизить остаточный заряд до 50 В или менее в течение 1 мин для конденсаторов 600 В или менее 5 мин для конденсаторов напряжением более 600 В по требованиям ANSI/IEEE, а также отечественных стандартов.
  • Риски резонансов на порядки взрастают при интеграции конденсаторной батареи, установки возле нелинейной нагрузки без превентивной защиты от эмиссии гармонических искажений фильтрами.

Справка
Без силовых конденсаторов, конденсаторной батареи, установки собственная резонансная частота энергосистемы довольно высокая и намного выше любой гармоники, генерируемой нелинейной нагрузкой. По мере увеличения частоты емкостное реактивное сопротивление уменьшается, а индуктивное реактивное сопротивление увеличивается, что при подключении конденсаторной батареи может привести к ситуации, когда на генерируемой нагрузкой гармонике с большой амплитудой система будет работать, как одна параллельная ветвь колебательного контура, а батарея — как другая.

В итоге это приведет к усилению гармонического тока, который может даже превысить ток основной частоты в разы, перегрузке конденсаторов, контакторов, кабельных линий и другого силового оборудования, в том числе трансформаторов. Для превентивного устранения проблемы на этапе проектирования часто используют расчет резонансной гармоники по формуле:

Вам понравится:  Как подключить китайский переключатель света

Где h — порядок гармоники, fn и f — резонансная и фундаментальная частоты соответственно, kVAsc — мощность короткого замыкания в месте подключения, kvarc — мощность конденсаторной батареи, установки.

Из формулы видно, что снижение мощности батареи ведет к увеличению резонансной частоты и, соответственно, варьируя этим параметром можно исключить риски резонансных явлений при условии стабильного kVAsc.

Однако уровень короткого замыкания в энергосистеме не является постоянной величиной и зависит от ряда параметров, включая мощность реально работающей нагрузки в определенное время, наличие/отсутствие аварий с отключением сегмента сети и т. д. Поэтому в идеале проводят частотное сканирование сети при подключенной батарее, установке с шагом от 2 Гц для всего диапазона исследуемых гармоник, как правило, (для промышленных объектов) от основной частоты и до 2400 Гц.

Принципиальная схема для исследования переходных процессов переключения конденсаторной батареи мощностью 6 МВАр в сети низкого среднего напряжения

Так, зарубежные исследования средневольтной конденсаторной батареи в линии 13.8 кВ (отечественный аналог — сеть 10.5 кВ), подключенной к магистрали 138 кВ (наш аналог 110 кВ) через понижающий трансформатор показали:

  • скачки напряжения при переходном процессе с амплитудой начала колебаний 24 кВ и пускового пикового тока 4,58 кА на частоте 770 Гц, и выход на номинальные значения параметров через 6 колебаний;
  • генерацию гармоник небольшого спектра, но с 11-й гармоникой, амплитуда которой составляла 130 % тока основной частоты.

Переходный ток переключения конденсаторной батареи мощностью 6 МВАр Переходное напряжение на шине 1 13,8 кВ при включении конденсаторной батареи мощностью 6 МВАр Спектр гармонического тока конденсаторной батареи мощностью 6 МВАр

Т. е. по факту при переходных процессах коммутации конденсаторная батарея становится источником эмиссии гармонических возмущений и поэтому оптимальным решением проблемы будет использование полосового шунтирующего фильтра, который защитит и конденсаторы в установке и саму сеть от наброса токов гармоник.

О негативном взаимном влиянии двух конденсаторных батарей на одной ветке силовой сети и вторичном резонансе с батареей, установкой на линии более низкого напряжения в следующем материале.

Источник

Польза и вред конденсаторных батарей, установок компенсации реактивной мощности. Часть вторая

Анонс: правильный выбор установок компенсации реактивной мощности. Некоторые особенности фильтровых (дроссельных) УКРМФ. Проблемы вторичного резонанса при неправильном выборе способа компенсации.

В условиях перехода на современные производственно-технологические процессы, инфраструктуру, поддерживаемые прогрессивными силовыми сетями «цифрового формата» с автоматическим управлением критически необходимой при выборе любого оборудования становится оценка рисков негативного влияния интегрируемой нагрузки на саму сеть или каналы телекоммуникации с программно-аппаратными комплексами АСУ.

Это правомерно и для технических средств компенсации реактивной мощности, локализации источников гармонических возмущений и нивелирования гармоник, однако вред от конденсаторных батарей, установок УКРМ, УКРМТ, УКРМТФ, фильтров de facto является условным, поскольку наличие или отсутствие негативов напрямую зависит от профессионального уровня проектирования.

Или проще:
— Выбор, как способа компенсации, так и конденсаторной установки повышения коэффициента мощности по «опросному листу», калькулятору, советам от «специалистов» был неразумным, но сегодня стал буквально nonsense с учетом ряда (возможных) негативных влияний УКРМ, УКРМФ, УКРМТ на силовую сеть, оборудование и информационные каналы связи с серверами АСУ.
— Опросные листы, калькуляторы могут и должны использоваться, но только для превентивной оценки комплектации, мощности и, основное — инвестиций в нивелирование перетоков реактивной энергии, наброса гармоник, а также окупаемости и экономической целесообразности финансовой выгоды от применения УКРМ, УКРМФ, УКРМТ и т. д. или фильтров гармоник.

Любая УКРМ, УКРМТ, УКРМТФ или фильтр гармоник должны проектироваться только профильными специалистами высокого квалификационного уровня и исключительно для конкретной силовой сети конкретного объекта с ее спецификой режима работы, особенностями нагрузок и на базе полного энергоаудита с регистрацией и анализом пакета параметров качества электроэнергии.

Только в этом случае все возможные негативные влияния на сеть будут превентивно нивелированы, а их de facto достаточно немало и наиболее критические максимально упрощенно для понимания рассмотрены в предыдущей статье и материале ниже.

Некоторые особенности фильтровых или дроссельных УКРМФ

Типичным решением проблемы резонанса со значительными токами на конденсаторных батареях, способными привести к пробою диэлектрика, возгоранию в установке остается использование токоограничивающих реакторов (неформально — дросселей), подключаемых к батарее последовательно и настраиваемых на определенную «антирезонансную» частоту.

De facto реактор действительно снижает емкостное реактивное сопротивление, а чистый выход кВАр от контура «дроссель-конденсаторы» увеличивается, поскольку напряжение на клеммах конденсатора возрастает, а генерируемая реактивная мощность изменяется пропорционально квадрату напряжения: V=n 2 /(n 2 -1) и Sf=S*n 2 /(n 2 -1), где:

  • V — напряжение на конденсаторах,
  • Sf и S — мощность ступени с и без реактора соответственно,
  • n = fn/f, fn — частота настройки с реактором,
  • f — фундаментальная частота.
Вам понравится:  Антенна omni lynwave 2 4ггц 5дб

Т. е. по факту реактор в фильтровых УКРМФ, УКРМТФ защищает конденсаторы от перегрузки по току, но батарея (ступень) или конденсаторная установка будет генерировать в сеть большую мощность, что может вызвать перекомпенсацию с ее негативными последствиями для силовой сети.

Второй проблемой фильтровых УКРМФ, УКРМТФ являются значительные риски аварийности из-за повышения температуры внутри шкафа при недостаточном пространстве и отсутствии принудительной вентиляции. Это обусловлено «гашением» токов гармоник сопротивлением обмоток реактора с трансформацией электрической энергии в тепловую и, соответственно выделением тепла, причем из-за скин-эффекта гармонические токи проходят тем ближе к поверхности сечения обмотки, чем выше частота и градиент температур по сечению может привести к разрушению проводов. Единственным решением этой проблемы остается принудительная вентиляция с обеспечением достаточного по нормативам пространства между ректором, конденсаторами, стенками шкафа и пр.

Проблемы вторичного резонанса при неправильном выборе способа компенсации

Традиционно для решения проблемы перетоков реактивной мощности сегодня предлагают централизованную, групповую, индивидуальную и комбинированную, сочетающую разные способы компенсацию, причем типичными из-за снижения инвестиций стали сочетания централизованной, групповой или индивидуальной с интеграцией конденсаторных установок на линиях разного уровня напряжения.

Вместе с тем почти никто из интеграторов конденсаторных установок/батарей не говорит о высоких рисках вторичного резонанса, возникающего в установке меньшего напряжения из-за переходных процессов при коммутации ступеней УКРМ на линии большего напряжения и особенно во вторичных цепях, резонансные частоты которых близки к собственной частоте высоковольтной конденсаторной батареи — (fc/fm) 2 =LmCm/LcCc, где, соответственно, fc и fm — частоты УКРМ, а LcCc и LmCm — индуктивность и емкость во вторичной, то есть меньшего напряжения, и главной — большего напряжения — сети.

При малых fc/fm из-за переходных процессов коммутации УКРМ в главной сети перенапряжение на УКРМ вторичной сети может превышать номинальное значение в пять раз. Аналогично, в моменты коммутации при низких отношениях, наблюдаются наброс гармонических токов, способных вызвать пробой конденсаторов на линии низкого напряжения.

Переходные процессы будут преобладать, когда мощность коммутируемой конденсаторной батареи в главной сети намного больше, чем мощность низковольтной установки и кабельных линий, что, как правило, типично, а самые значительные перенапряжения и набросы токов больших амплитуд возникают, когда частота УКРМ в главной сети близкая с резонансной частотой последовательного контура, образованного понижающим трансформатором и емкостью низковольтной конденсаторной установки или батареи.

Поэтому лучше всего применять конденсаторные установки, батареи только с одним уровнем напряжения, а если технически необходим комбинированный способ компенсации, то необходим тщательный анализ переходных процессов переключения для предварительного определения точек резонанса и их устранения.

Источник

Конденсаторы для резонансных цепей

Как известно, конденсаторы различных типов имеют характеристики, делающие их пригодными для одних и непригодными для других применений. Реальный конденсатор не является чистой емкостью, а обладает также сопротивлением и индуктивностью. Индуктивность L создается как выводами, так и структурой самого конденсатора .

Частотные характеристики конденсаторов являются важными параметрами, которые необходимы для разработки схем. Понимание частотных характеристик конденсатора позволит вам определить, например, какие шумы может подавлять конденсатор или какие флуктуации напряжения цепи питания он может контролировать. Эта статья описывает два типа частотных характеристик: |Z| (импеданс или полное сопротивление) и ESR (эквивалентное последовательное сопротивление конденсатора).

Импеданс Z идеального конденсатора определяется формулой 1, где ω — угловая частота, а C — емкость конденсатора.

Рисунок 1. Идеальный конденсатор

(1)

Из формулы 1 видно, что с увеличением частоты импеданс конденсатора уменьшается. Это показано на рисунке 1. В идеальном конденсаторе нет потерь и эквивалентное последовательное сопротивление (ESR) равно нулю.

Рисунок 2. Частотная характеристика идеального конденсатора

В реальном конденсаторе (рис. 3) существует некоторое сопротивление (ESR), вызванное диэлектрическими потерями, потерями на сопротивлении обкладок конденсатора и потерями связанные с сопротивлением утечки, а также паразитная индуктивность (ESL) выводов и обкладок конденсатора. В результате частотная характеристика импеданса принимает V образную форму (или U образную в зависимости от типа конденсатора), как показано на рисунке 4.Также на рисунке показана частотная характеристика ESR.

Рисунок 3. Реальный конденсатор

Рисунок 4. Пример частотной характеристики реального конденсатора

Причина, по которой графики |Z| и ESR имеют такой вид как на рисунке 4, можно объяснить следующим образом.

Низкочастотная область

|Z| в этой области уменьшается обратно пропорционально частоте, как и в идеальном конденсаторе. Значение ESR определяется диэлектрическими потерями в конденсаторе.

Вам понравится:  Домофон hiwatch ds d100k схема подключения

Область резонанса

При повышении частоты ESR, в результате паразитной индуктивности, сопротивления электродов и других факторов, вызывает отклонение |Z| от идеальной характеристики (красная пунктирная линия) и достигает минимального значения. Частота, на которой |Z| достигает минимума, называется собственной резонансной частотой и на этой частоте |Z| = ESR. После превышения собственной частоты резонанса, характеристика элемента меняется с емкостной на индуктивную и |Z| начинает повышаться. Область ниже собственной резонансной частоты называется емкостной областью, а область выше — индуктивной.
В области резонанса к диэлектрическим потерям добавляются потери на электродах.

Высокочастотная область

При дальнейшем увеличении частоты характеристика |Z| определяется паразитной индуктивностью конденсатора. В высокочастотной области |Z| увеличивается пропорционально частоте, согласно формуле 2. Что касается ESR, в этой области начинают проявляться скин-эффект , эффект близости и другие.

(2)

Итак, мы рассмотрели частотную характеристику реального конденсатора. Здесь важно запомнить, что c повышением частоты ESR и ESL уже нельзя игнорировать. Поскольку существуют большое количество приложений, в которых конденсаторы используются на высоких частотах, ESR и ESL становятся важными параметрами, характеризующими конденсатор помимо значения его емкости.

Паразитные составляющие реальных конденсаторов имеют различное значение в зависимости от их типа. Давайте посмотрим на частотные характеристики разных конденсаторов. На рисунке 5 показаны графики |Z| и ESR для конденсаторов емкостью 10 мкФ. Все конденсаторы, кроме пленочных, планарные (SMD).

Рисунок 5. Частотные характеристики конденсаторов разных типов.

Для всех типов конденсаторов |Z| ведет себя одинаково до частоты 1 кГц. После 1 кГц импеданс увеличивается сильнее в алюминиевых и танталовых электролитических конденсаторах, чем в монолитных керамических и пленочных конденсаторах.
Это происходит из-за того, что алюминиевые и танталовые конденсаторы имеют высокое удельное сопротивление электролита и большое ESR. В пленочных и монолитных керамических конденсаторах используются металлические материалы для электродов и, следовательно, они обладают очень маленьким ESR.
Монолитные керамические конденсаторы и пленочные показывают примерно одинаковые характеристики до точки собственного резонанса, но у монолитных керамических конденсаторов резонансная частота выше, а |Z| в индуктивной области ниже.
Эти результаты показывают, что импеданс монолитных керамических конденсаторов SMD типа в широком диапазоне частот имеет небольшое значение. Это делает их наиболее подходящими для высокочастотных приложений.

Существует также несколько типов монолитных керамических конденсаторов, изготовленных из различных материалов и имеющих различную форму. Давайте посмотрим, как эти факторы влияют на частотные характеристики.

ESR

ESR в емкостной области зависит от диэлектрических потерь, вызванных материалом диэлектрика. 2-й класс диэлектрических материалов на основе сегнетоэлектриков имеет высокую диэлектрическую постоянную и, как правило, высокое ESR. 1-ый класс материалов — температурно-компенсированные материалы на основе параэлектриков — имеют низкие диэлектрические потери и низкое ESR.
На высоких частотах в области резонанса и индуктивной области, в дополнение к сопротивлению материала электродов, их форме и количеству слоев, ESR зависит от скин-эффекта и эффекта близости. Электроды часто делают из Ni, но для дешевых конденсаторов иногда применяют Cu, который тоже имеет низкое сопротивление.

ESL

ESL монолитных керамических конденсаторов сильно зависит от внутренней структуры электродов. Если размеры внутренних электродов задаются длиной, шириной и толщиной, то индуктивность ESL может быть определена математически. Значение ESL уменьшается, когда электроды конденсатора короче, шире и тоньше.
На рисунке 6 показана связь между номинальной емкостью и резонансной частотой различных типов монолитных керамических конденсаторов. Вы можете видеть, что при уменьшении размеров конденсатора собственная резонансная частота увеличивается, а ESL уменьшается для одинаковых значений емкости. Это означает, что небольшие конденсаторы короткой длины лучше подходят для высокочастотных приложений.


Рисунок 6.

На рисунке 7 показан обратный LW конденсатор с короткой длиной L и большой шириной W. Из частотных характеристик, показанных на рисунке 8, можно увидеть, что LW конденсатор имеет меньший импеданс и лучшие характеристики, чем обычный конденсатор такой же емкости. С помощью LW конденсаторов можно достичь тех же характеристик, как у обычных конденсаторов, но меньшим числом компонентов. Уменьшение числа компонентов, позволяет сократить расходы и уменьшить монтажное пространство.

Рисунок 7. Внешний вид обратного LW конденсатора.

Рисунок 8. |Z| и ESR обратного LW конденсатора и конденсатора общего назначения

Изготовленные из термостойкой полипропиленовой пленки, наши высоковольтные резонансные конденсаторы имеют металлизированный электрод, утолщенный с обеих сторон. Этот металлопленочный конденсатор отличается безындукционной конструкцией и проходит суровые испытательные тесты.

Поскольку данные конденсаторы отличаются постоянным напряжением и стабильными электрическими характеристиками, они подходят для индукционных плит с высокочастотным колебательным контуром.

Типовая схема резонансного конденсатора

Источник

Оцените статью
Частотные преобразователи