- Kia 7805a характеристики ампераж
- 7805 стабилизатор — трехвыводные стабилизаторы напряжения
- Распиновка
- Стабилизаторы для питания микросхем
- Стабилизатор напряжения 5 вольт
- Стабилизатор напряжения 7805 схема включения
- Содержание
- Внутреннее устройство [ править | править код ]
- Встроенные схемы защиты [ править | править код ]
- Схема подключения L7805CV
- Проверка работоспособности L7805CV
- Характеристики стабилизатора L7805CV, его аналоги
- Стабилизаторы семейства LM
- Схема подключения
- Характеристики LM стабилизаторов
- Работа LM на практике
- Как сделать блок питания на 5, 9,12 Вольт?
- Заключение
- Купить стабилизатор напряжения
Kia 7805a характеристики ампераж
7805 стабилизатор — трехвыводные стабилизаторы напряжения
Устройства, которые входят в схему блока питания, и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированные значения напряжения выхода: 5, 9 или 12 вольт. Но существуют устройства с наличием регулировки. В них можно установить желаемое напряжение в определенных доступных пределах.
Большинство стабилизаторов предназначены на определенный наибольший ток, который они выдерживают. Если превысить эту величину, то стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой по току, обеспечивающей выключение устройства при достижении наибольшего тока в нагрузке и защищены от перегрева. Вместе со стабилизаторами, которые поддерживают положительное значение напряжения, есть и устройства, действующие с отрицательным напряжением. Они применяются в двухполярных блоках питания.
Стабилизатор 7805 изготовлен в корпусе, подобном транзистору. На рисунке видны три вывода. Он рассчитан на напряжение 5 вольт и ток 1 ампер. В корпусе есть отверстие для фиксации стабилизатора к радиатору. Модель 7805 является устройством положительного напряжения.
Зеркальное отображение этого стабилизатора — это его аналог 7905, предназначенный для отрицательного напряжения. На корпусе будет положительное напряжение, на вход поступит отрицательное значение. С выхода снимается -5 В. Чтобы стабилизаторы работали в нормальном режиме, нужно подавать на вход 10 вольт.
Распиновка
Стабилизатор 7805 имеет распиновку, которая показана на рисунке. Общий вывод соединен с корпусом. Во время установки устройства это играет важную роль. Две последние цифры обозначают выдаваемое микросхемой напряжение.
Стабилизаторы для питания микросхем
Рассмотрим методы подключения к питанию цифровых приборов, сделанных самостоятельно, на микроконтроллерах. Любое электронное устройство требует для нормальной работы правильное подключение питания. Блок питания рассчитывается на определенную мощность. На его выходе устанавливается конденсатор значительной величины емкости для выравнивания импульсов напряжения.
Блоки питания без стабилизации, применяемые для роутеров, сотовых телефонов и другой техники, не сочетаются с питанием микроконтроллеров напрямую. Выходное напряжение этих блоков изменяется, и зависит от подключенной мощности. Исключением из этого правила являются зарядные блоки для смартфонов с USB портом, на котором выходит 5 В.
Схема работы стабилизатора, сочетающаяся со всеми микросхемами этого типа:
Если разобрать стабилизатор и посмотреть его внутренности, то схема выглядела бы следующим образом:
Для электронных устройств не чувствительных к точности напряжения, такой прибор подойдет. Но для точной аппаратуры нужна качественная схема. В нашем случае стабилизатор 7805 выдает напряжение в интервале 4,75-5,25 В, но нагрузка по току не должна быть больше 1 А. Нестабильное входное напряжение колеблется в интервале 7,5-20 В. При этом выходное значение будет постоянно равно 5 В. Это является достоинством стабилизаторов.
При возрастании нагрузки, которую может выдать микросхема (до 15 Вт), прибор лучше обеспечить охлаждением вентилятором с установленным радиатором.
Работоспособная схема стабилизатора:
- Наибольший ток 1,5 А.
- Интервал входного напряжения – до 40 вольт.
- Выход – 5 В.
Во избежание перегрева стабилизатора, необходимо поддерживать наименьшее входное напряжение микросхемы. В нашем случае входное напряжение 7 вольт.
Лишнюю величину мощности микросхема рассеивает на себе. Чем выше входное напряжение на микросхеме, тем выше потребляемая мощность, которая преобразуется в нагревание корпуса. В итоге микросхема перегреется и сработает защита, устройство отключится.
Стабилизатор напряжения 5 вольт
Такое устройство имеет отличие от аналогичных приборов в своей простоте и приемлемой стабилизации. В нем использована микросхема К155J1А3. Этот стабилизатор использовался для цифровых устройств.
Устройство состоит из рабочих узлов: запуска, источника образцового напряжения, схемы сравнения, усилителя тока, ключа на транзисторах, накопителя индуктивной энергии с коммутатором на диодах, фильтров входа и выхода.
После подключения питания начинает действовать узел запуска, который выполнен в виде стабилизатора напряжения. На эмиттере транзистора возникает напряжение 4 В. Диод VD3 закрыт. В итоге включается образцовое напряжение и усилитель тока.
Ключ на транзисторах закрыт. На выходе усилителя образуется импульс напряжения, который открывает ключ, пропускающий ток на накопитель энергии. В стабилизаторе включается схема отрицательной связи, устройство переходит в режим работы.
Все применяемые детали тщательно проверяются. Перед установкой на плату резистора, его значение делают равным 3,3 кОм. Стабилизатор вначале подключают на 8 вольт с нагрузкой 10 Ом, далее, при необходимости устанавливают его на 5 вольт.
% PDF-1.3 % 103 0 объект > endobj Xref 103 40 0000000016 00000 н. 0000001151 00000 н. 0000001680 00000 н. 0000001897 00000 н. 0000002177 00000 н. 0000002567 00000 н. 0000002717 00000 н. 0000002758 00000 н. 0000003562 00000 н. 0000004079 00000 п. 0000004780 00000 н. 0000004804 00000 н. 0000021995 00000 п. 0000022019 00000 п. 0000039731 00000 п. 0000039755 00000 п. 0000056853 00000 п. 0000056877 00000 п. 0000074231 00000 п. 0000074255 00000 п. 0000091437 00000 п. 0000091461 00000 п. 0000109367 00000 п. 0000109391 00000 п. 0000127233 00000 н. 0000127257 00000 н. 0000144391 00000 н. 0000147506 00000 н. 0000153529 00000 н. 0000153734 00000 н. 0000153873 00000 н. 0000154010 00000 н. 0000154150 00000 н. 0000154367 00000 н. 0000475710 00000 н. 0000475907 00000 н. 0000476087 00000 н. 0000476284 00000 н. 0000001240 00000 н. 0000001658 00000 н. прицеп ] > > startxref 0 %% EOF 104 0 объект > endobj 141 0 объект > поток Hb«`l @ ( 0! G L2LB [JzTge7vdsqԆg @ ООМ.P7 (lQI & ѥvl & Birn $ г \> & Km [lV.G rrHT1 Mj8oi V0% QajX $ 7 $ BӀBNb0D50
Стабилизатор напряжения 7805 схема включения
78xx — семейство трёхвыводных линейных интегральных стабилизаторов положительного напряжения первого поколения. Базовое семейство 78xx включает микросхемы на девять фиксированных выходных напряжений от +5 до +24 Вольт, обозначаемых четырёхзначными кодами 7805, 7806 … 7824 (третий и четвёртый знаки — выходное напряжение). ИС μA78G (без цифрового суффикса) — регулируемый четырёхвыводной стабилизатор на напряжения +5…+30 В. Допустимое входное напряжение ограничено +35 В (40 В для 7824), допустимый выходной ток ИС в корпусе TO-220 ограничен 1 А. Схема имеет встроенную защиту от перегрева и встроенную односкатную защиту выходного транзистора от перегрузок.
Существует связанное с данным семейство 79xx для регуляторов отрицательного напряжения. Интегральные схемы 78xx и 79xx могут использоваться вместе, чтобы обеспечить как положительные, так и отрицательные напряжения питания в той же цепи.
Первые ИС этого семейства были выпущены в начале 1970-х годов Fairchild Semiconductor под обозначениями μA7805…μA7824, и представляли собой развитие ИС LM109 Роберта Видлара. Впоследствии выпуск 78хх освоили различные производители. В настоящее время (2012 год), кроме базового семейства 7805, выпускаются его варианты на бо́льшие и меньшие выходные токи (78ххM, 78xxL и другие) в корпусах ТО-220, ТО-92, SOP8L, D2PAK.
Содержание
Внутреннее устройство [ править | править код ]
Биполярные ИС семейства 78xx изготавливаются по планарно-эпитаксиальной технологии, оптимизированной под производство мощных выходных транзисторов. В ИС применяются мощные и слаботочные npn-транзисторы, боковые pnp-транзисторы (в источнике тока), подложечный pnp-транзистор (в усилителе ошибки), поверхностные стабилитроны (диоды Зенера) и сопротивления величиной от 0,2 Ом (датчик выходного тока) до 20 К. Единственный слой алюминия, соединяющего эти компоненты, имеет толщину до 1 мкм. Площадь кристалла зависят от максимального выходного тока: «большие» кристаллы военных серий на токи 1-1,5 А имеют размер 1,6×1,7 мм (67×73 мил) или 2×2 мм (80×80 мил) при толщине 0,3 мм (12 мил) [1]
Все ИС семейства строятся по одной и той же схеме компенсационного стабилизатора. Принципиальные схемы ИС на разные напряжения различаются величиной верхнего резистора в делителе выходного напряжения, принципиальные схемы ИС на разные выходные токи — сопротивлением датчика выходного тока (от 0,2 до 2 Ом). Величины прочих сопротивлений в ИС разных подсемейств разных производителей могут несущественно различаться. Графическое представление принципиальных схем обычно предельно упрощено. Один транзистор схемы может в действительности состоять из множества параллельно включенных транзисторных структур, один резистор — из нескольких последовательно включенных резисторов и включенных параллельно с ними технологических стабилитронных перемычек. На схемах обычно не указывается важнейшие параметры «аналоговых» транзисторов — относительные площади их эмиттерных переходов.
Регулирующим (проходным) элементом схемы служит составной транзистор Дарлингтона npn-структуры (Т15, Т16), включенный эмиттерным повторителем, источником опорного напряжения — бандгап по модифицированной схеме Видлара. Обратная связь по напряжению замыкается через делитель напряжения (R20, R21), подключенный между общим проводом и выходом схемы. Нижнее сопротивление этого делителя (R21) обычно равно 4 кОм, верхнее (R20, от 1 до 21 кОм) зависит от напряжения стабилизации (от 5 до 24 В). Усилитель ошибки сравнивает напряжение на средней точке делителя с напряжением на выходе бандгапа; если напряжение на средней точке отклоняется от искомой величины (+4,0 В, а в маломощных ИС 78Lxx 2,5 В), то усилитель корректирует ток выходного транзистора, шунтируя источник стабильного тока на Т11.
Встроенные схемы защиты [ править | править код ]
В мощных ИС подсемейств 78xx, 78Mxx и им подобным реализована односкатная схема защиты выходных транзисторов от выхода за пределы области безопасной работы (ОБР) по току и напряжению. При малых падениях напряжения между входом и выходом (до 10 В) транзистор Т14 работает в режиме ограничителя тока: если падение напряжения на датчике (R16) превышает примерно 0,6 В (напряжение на открытом переходе база-эмиттер, Uбэ), Т14 плавно открывается и шунтирует (но не прерывает) базовый ток регулирующего транзистора. При больших падениях напряжения между входом и выходом пороговое значение тока линейно снижается. Так как пороговое Uбэ уменьшается с ростом температуры, то и порог срабатывания с ростом температуры снижается. В маломощных ИС подсемейства 78Lxx напряжение вход-выход не учитывается, схема защиты реагирует только на выходной ток.
Схема защиты от перегрева расположена «выше по течению» и работает независимо от защиты по ОБР: при температуре кристалла порядка +125 °С напряжение на последовательно включенных эмиттерных переходах Т2, Т3 падает настолько, что цепь защиты перехватывает управление выходным транзистором, и напряжение на выходе падает.
Встроенный подложечный диод защищает схему от воздействия обратного тока, протекающего от выхода ко входу при нормальном выключении устройства, поэтому обычно защищать микросхему внешним обратным диодом не нужно. Некоторые производители указывают характеристики встроенного обратного диода в явном виде: например, в ИС семейства NCP7800 омическое сопротивление обратной цепи равно 1 Ом, а предельный обратный ток в коротком (несколько мс) импульсе не должен превышать 5 А (протекание постоянного обратного тока не оговаривается). Этого запаса может быть недостаточным при мгновенном закорачивании входной цепи, например, при срабатывании тиристорной защиты блока питания. В схемах, в которых возможно такое закорачивание и в которых к выходу ИС 78хх подключены значительные ёмкости, следует защищать микросхемы внешними обратно включенными диодами.
Защиты от перенапряжения по входу не существует. Излишек входного напряжения можно погасить, включив на входе ИС 78хх балластный резистор — при условии, что минимального тока, протекающего через этот резистор в наихудших условиях, достаточно, чтобы напряжение на входе ИС никогда не поднималось выше допустимого максимума.
Интегральный стабилизатор L7805 CV – обычный трехвыводной стабилизатор положительного напряжения на 5В. Выпускается фирмой STMircoelectronics, примерная цена около 1 $. Выполнен в стандартном корпусе TO -220 (см. рисунок) , в котором выполнено много транзисторов, однако, предназначение у него совсем другое.
В маркировке серии 78ХХ последние две цифры обозначают номинал стабилизируемого напряжения, например:
- 7805 — стабилизация на 5 В;
- 7812 — стабилизация на 12 В;
- 7815 — стабилизация на 15 В и т.д.
Серия 79 предназначена для отрицательного выходного напряжения.
Используется для стабилизации напряжения в различных низковольтных схемах. Очень удобно использовать, когда необходимо обеспечить точность подаваемого напряжения, не требуется городить сложных схем стабилизации, а все это можно заменить одной микросхемой и парочкой конденсаторов.
Схема подключения L7805CV
Схема подключения L 7805 CV довольно проста, для работы необходимо согласно datasheet повесить конденсаторы по входу 0,33 мкФ, и по выходу 0,1 мкФ. Важно при монтаже или при конструировании, конденсаторы расположить максимально близко к выводам микросхемы. Делается это чтобы обеспечить максимальный уровень стабилизации и уменьшению помех.
По характеристикам стабилизатор L7805CV работоспособен при подаче входного постоянного напряжения в пределах от 7,5 до 25 В. На выходе микросхемы будет стабильное постоянное напряжение в 5 Вольт. В этом состоит вся прелесть микросхемы L7805CV.
Проверка работоспособности L7805CV
Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром, если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.
Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:
Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.
Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.
Характеристики стабилизатора L7805CV, его аналоги
Основные параметры стабилизатора L7805CV:
- Входное напряжение — от 7 до 25 В;
- Рассеиваемая мощность — 15 Вт;
- Выходное напряжение — 4,75…5,25 В;
- Выходной ток — до 1,5 А.
Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.
Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В , вообще, приведет к отсутствию напряжения на выходе стабилизатора.
При работе на больших нагрузках, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.
Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.
Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.
Стабилизаторы семейства LM
В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.
Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.
Схема подключения
А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.
На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.
Характеристики LM стабилизаторов
Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:
Output voltage – выходное напряжение
Input voltage – входное напряжение
Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.
Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.
Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.
Работа LM на практике
Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.
Соберем его по схеме
Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.
Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.
На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.
И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!
Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.
Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.
А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.
Как сделать блок питания на 5, 9,12 Вольт?
Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:
Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.
Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.
Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.
Заключение
Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.
Купить стабилизатор напряжения
Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.