Конденсатор способен накапливать электрические заряды на пластинах если к ним приложена

§52. Конденсаторы, их назначение и устройство

Заряд и разряд конденсатора.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

Рис. 181. Заряд и разряд конденсатора

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным.

В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться.

При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь.

В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора.

Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Рис. 182. Плоский (а) и цилиндрический (б) конденсаторы

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе.

Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Рис. 183. Емкости, образованные проводами воздушной линии (а) и жилами кабеля (б)

Устройство конденсаторов и их применение в технике.

В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184).

Рис. 184. Общие виды применяемых конденсаторов: 1 — слюдяные; 2 — бумажные; 3 — электролитический; 4 — керамический

Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями.

Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Рис. 185. Устройство бумажного (а) и электролитического (б) конденсаторов

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается).

Вам понравится:  Где сделать розетку под посудомойку

Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе.

На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для создания симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин.

В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине).

Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается.

По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186).

Рис. 186. Устройство конденсатора переменной емкости

Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов.

Конденсаторы можно соединять последовательно и параллельно. При последовательном соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

эквивалентное емкостное сопротивление

результирующее емкостное сопротивление

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

Рис. 187. Последовательное (а) и параллельное (б) соединения конденсаторов

Включение и отключение цепей постоянного тока с конденсатором.

При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения uc.

При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток Iнач=U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б).

Рис. 188. Схема подключения цепи R-C к источнику постоянного тока (а) и кпивые тока и напряжения при переходном процессе (б) кривые

Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе uс и ток i постепенно уменьшаются до нуля (рис. 189,б).

Рис. 189. Схема разряда емкости С на резистор R (а) и кривые тока и напряжения при переходном процессе (б)

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

T = RC

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными, и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств.

Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору.

Рис. 190. Кривая пилообразного напряжения

Периоды Т1 и T2, соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т3 и разряда Тр, т. е. сопротивлениями резисторов, включенных в эти цепи.

Источник

Что такое конденсатор и как он работает?

Если вы рассмотрите печатную плату даже самого простого электронного устройства, то обязательно увидите конденсатор, а чаще всего встретите множество этих элементов. Присутствие этих изделий на различных электронных схемах объясняется свойствами данных радиоэлементов, широким диапазоном функций, которые они выполняют.

В настоящее время промышленность поставляет на рынок конденсаторную продукцию различных видов (рис. 1). Параметры изделий варьируются в широких пределах, что позволяет легко подобрать радиодеталь для конкретной цели.

Вам понравится:  Как собрать коробку переключателя

Рис. 1. Распространённые типы конденсаторов

Рассмотрим более подробно конструкции и основные параметры этих вездесущих радиоэлементов.

Что такое конденсатор?

В классическом понимании конденсатором является радиоэлектронное устройство, предназначенное для накопления энергии электрического поля, обладающее способностью накапливать в себе электрический заряд, с последующей передачей накопленной энергии другим элементам электрической цепи. Устройства очень часто используют в различных электрических схемах.

Конденсаторы способны очень быстро накапливать заряд и так же быстро отдавать всю накопленную энергию. Для их работы характерна цикличность данного процесса. Величина накапливаемого электричества и периоды циклов заряда-разряда определяется характеристиками изделий, которые в свою очередь зависят от типа модели. Параметры этих величин можно определить по маркировке изделий.

Конструкция и принцип работы

Простейшим конденсатором являются две металлические пластины, разделённые диэлектриком. Выступать в качестве диэлектрика может воздушное пространство между пластинами. Модель такого устройства изображена на рис. 2.

Если на конструкцию подать постоянное напряжение, то образуется кратковременная замкнутая электрическая цепь. На каждой металлической пластине сконцентрируются заряды, полярность которых будет соответствоать полярности приложенного тока. По мере накопления зарядов ток будет ослабевать, и в определенный момент цепь разорвётся. В нашем случае это произойдёт молниеносно.

При подключении нагрузки накопленная энергия устремится через нагрузочный элемент в обратном направлении. Произойдёт кратковременный всплеск электрического тока в образованной цепи. Количество накапливаемых зарядов (ёмкость, C) прямо зависит от размеров пластин.

Единицу измерения ёмкости принятоназывать фарадой (Ф). 1 F – очень большая величина, поэтому на практике часто применяют кратные величины: микрофарады (1 мкФ = 10 -6 F ), нанофарады ( 1 нФ = 10 -9 F = 10 -3 мкФ), пикофарады (1 пкФ = 10 -12 F = 10 -6 мкФ). Очень редко применяют величину милифараду (1 мФ = 10 -3 Ф).

Конструкции современных конденсаторов отличаются от рассматриваемой нами модели. С целью увеличения ёмкости вместо пластин используют обкладки из алюминиевой, ниобиевой либо танталовой фольги, разделённой диэлектриками. Эти слоеные ленты туго сворачивают в цилиндр и помещают в цилиндрический корпус. Принцип работы не отличается от описанного выше.

Существуют также плоские конденсаторы, конструктивно состоящие из множества тонких обкладок, спрессованных между слоями диэлектрика в форме параллелепипеда. Такие модели можно представить себе в виде стопки пластин, образующих множество пар обкладок, соединённых параллельно.

В качестве диэлектриков применяют:

  • бумагу;
  • полипропилен;
  • тефлон;
  • стекло;
  • полистирол;
  • органические синтетические плёнки;
  • эмаль;
  • титанит бария;
  • керамику и различные оксидные материалы.

Отдельную группу составляют изделия, у которых одна обкладка выполнена из металла, а в качестве второй выступает электролит. Это класс электролитических конденсаторов (пример на рисунке 3 ниже). Они отличаются от других типов изделий большой удельной ёмкостью. Похожими свойствами обладают оксидно-полупроводниковые модели. Второй анод у них – это слой полупроводника, нанесённый на изолирующий оксидный слой.

Электролитические модели, а также большинство оксидно-полупроводниковых конденсаторов имеют униполярную проводимость. Их эксплуатация допустима лишь при наличии положительного потенциала на аноде и при номинальных напряжениях. Поэтому следует строго соблюдать полярность подключения упомянутых радиоэлектронных элементов.

На корпусе такого прибора обязательно указывается полярность (светлая полоска со значками «–», см. рис. 4) или значок «+» со стороны положительного электрода на корпусах старых отечественных конденсаторов.

Рисунок 4. Обозначение полярности выводов

Срок службы электролитического конденсатора ограничен. Эти приборы очень чувствительны к высоким напряжениям. Поэтому при выборе радиоэлемента старайтесь, чтобы его рабочее напряжение было значительно выше номинального.

Свойства

Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.

В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.

Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.

Основные параметры и характеристики

Ёмкость.

Важным параметром конденсатора является его номинальная ёмкость. Для плоского конденсатора справедлива формула:

С = (ε*ε*S) / d,

где ε – диэлектрическая проницаемость диэлектрика, S – размеры обкладок (площадь пластин), d – расстояние между пластинами (обкладками).

Реальная емкость отдельных элементов обычно невелика, но можно получить конструкцию ёмкостью в несколько фарад, если параллельно соединить огромное число обкладок. В этом случае реальная ёмкость равняется сумме всех ёмкостей обкладок.

Вам понравится:  Основные параметры цифровых интегральных микросхем

Максимальные емкости некоторых конденсаторов могут достигать нескольких фарад.

Удельная ёмкость.

Величина, характеризующая отношение ёмкости к объёму или к массе радиодетали. Данный параметр важен в микроэлектронике, где размеры деталей очень важны.

Номинальное напряжение.

Одной из важных электрических характеристик является номинальное напряжение – значение максимальных напряжений, при которых конденсатор может работать без потери значений других его параметров. При превышении критической величины равной напряжению пробоя происходит разрушение диэлектрика. Поэтому номинальное напряжение подбирают заведомо большее любых возможных максимальных амплитуд синусоидального тока в цепи конденсатора.

Существуют характеристики, такие как тангенс угла потерь, температурный коэффициент ёмкости, сопротивление утечки, диэлектрическая абсорбция и др., которые интересны только узким специалистам, а их параметры можно узнать из специальных справочников.

Классификация

Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.

По данному признаку различают следующие типы изделий:

  • вакуумные;
  • с воздушным диэлектриком;
  • радиоэлементы, в которых диэлектриком является жидкость;
  • с твёрдым неорганическим диэлектриком (стекло, слюда, керамика). Характеризуются малым током утечки;
  • модели с бумажным диэлектриком и комбинированные, бумажно-плёночные;
  • масляные конденсаторы постоянного тока;
  • электролитические;
  • категория оксидных конденсаторов, к которым относятся оксидно-полупроводниковые и танталовые конденсаторы;
  • твёрдотельные, у которых вместо жидкого электролита используется органический полимер или полимеризованный полупроводник.

В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.

Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:

  • постоянные конденсаторы, то есть те, которые имеют постоянную емкость;
  • переменные, у которых можно управлять изменением ёмкости механическим способом либо с помощью приложенного напряжения (варикапы и вариконды), а также путём изменения температуры (термоконденсаторы);
  • класс подстроечных конденсаторов, которые используют для подстройки или выравнивания рабочих ёмкостей при настройке контуров, а также с целью периодической подстройки различных схем.

Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.

Рис. 6. Конденсаторы общего назначения

Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:

  • импульсные;
  • пусковые;
  • высоковольтные (см. рис. 7);
  • помехоподавляющие,
  • дозиметрические и др.;

Рис. 7. Высоковольтные конденсаторы

Изображённые на фото устройства могут работать в высоковольтных цепях сравнительно низкой частоты.

Маркировка

Для маркировки отечественных изделий применялась буквенная система. Сегодня распространена цифровая маркировка. В буквенной системе применялись символы:

  • К – конденсатор;
  • Б, К, С, Э и т. д – тип диэлектрика, например: К – керамический, Э – электролитический;
  • На третьем месте стоял символ, обозначающий особенности исполнения.

В данной системе маркировки иногда первую букву опускали.

В новой системе маркировки на первом месте может стоять буква К, а после неё идёт буквенно-цифровой код. Для обозначения номинала, вида диэлектрика и номера разработки используют цифры. Пример такой маркировки показан на рисунке 8. Обратите внимание на то, что на корпусе электролитического конденсатора обозначена полярность включения.

  • Ёмкость от 0 до 999 пФ указывают в пикофарадах, например: 250p:
  • от 1000 до 999999 пФ – в нанофарадах: n180;
  • от 1 до 999 мкФ – в микрофарадах: 2μ5;
  • от 1000 до 999999 мкФ – в миллифарадах: m150;
  • ёмкость, больше значения 999999 мкФ, указывают в фарадах.

Обозначение на схемах

Каждое семейство конденсаторов имеет своё обозначение, позволяющее визуально определить его тип (см. рис. 9).

Рис. 9. Обозначение на схемах

Соединение конденсаторов

Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.

Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )

Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:

Применение

Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:

  • построение цепей обратной связи, фильтров, колебательных контуров;
  • использование в качестве элемента памяти;
  • для компенсации реактивной мощности;
  • для реализации логики в некоторых видах защит;
  • в качестве датчика для измерения уровня жидкости;
  • для запуска электродвигателей в однофазных сетях переменного тока.

С помощью этого радиоэлектронного элемента можно получать импульсы большой мощности, что используется, например, в фотовспышках, в системах зажигания карбюраторных двигателей.

Источник

Оцените статью
Частотные преобразователи