Мощный усилитель звука на одном транзисторе схема

Схема усилителя звука на одном транзисторе

Усилитель звуковой частоты является важнейшим узлом многих электронных устройств. Это может быть воспроизведение музыкальных файлов, системы оповещения пожарной и охранной сигнализации или звуковые датчики различных игрушек. Бытовая техника оснащена встроенными низкочастотными каналами, но при домашнем конструировании электронных самоделок может потребоваться необходимость сделать это устройство самостоятельно.

Схема усилителя звука на транзисторах своими руками

Диапазон звуковых частот, которые воспринимаются человеческим ухом, находится в пределах 20 Гц-20 кГц, но устройство, выполненное на одном полупроводниковом приборе, из-за простоты схемы и минимального количества деталей обеспечивает более узкую полосу частот. В простых устройствах, для прослушивания музыки достаточно частотного диапазона 100 Гц-6 000 Гц. Этого хватит для воспроизведения музыки на миниатюрный динамик или наушник. Качество будет средним, но для мобильного устройства вполне приемлемым.

Схема простого усилителя звука на транзисторах может быть собрана на кремниевых или германиевых изделиях прямой или обратной проводимости (p-n-p, n-p-n). Кремниевые полупроводники менее критичны к напряжению питания и имеют меньшую зависимость характеристик от температуры перехода.

Схема усилителя звука на 1 транзисторе

Простейшая схема усилителя звука на одном транзисторе включает в себя следующие элементы:

  • Транзистор КТ 315 Б
  • Резистор R1 – 16 ком
  • Резистор R2 – 1,6 ком
  • Резистор R3 – 150 ом
  • Резистор R4 – 15 ом
  • Конденсатор С1 – 10,0 мкф
  • Конденсатор С2 – 500,0 мкф

Это устройство с фиксированным напряжением смещения базы, которое задаётся делителем R1-R2. В цепь коллектора включен резистор R3, который является нагрузкой каскада. Между контактом Х2 и плюсом источника питания можно подключить миниатюрный динамик или наушник, который должен иметь большое сопротивление. Низкоомную нагрузку на выход каскада подключать нельзя. Правильно собранная схема начинает работать сразу и не нуждается в настройке.

Схема усилителя звуковой частоты

Более качественный УНЧ можно собрать на двух приборах.

Схема усилителя на двух транзисторах включает в себя больше комплектующих элементов, но может работать с низким уровнем входного сигнала, так как первый элемент выполняет функцию предварительного каскада.

Переменный сигнал звуковой частоты подаётся на потенциометр R1, который играет роль регулятора громкости. Далее через разделительный конденсатор сигнал подаётся на базу элемента первой ступени, где усиливается до величины, обеспечивающей нормальную работу второй ступени. В цепь коллектора второго полупроводника включен источник звука, которым может быть малогабаритный наушник. Смещение на базах задают резисторы R2 и R4. Кроме КТ 315 в схеме усилителя звука на двух транзисторах можно использовать любые маломощные кремниевые полупроводники, но в зависимости от типа применяемых изделий может потребоваться подбор резисторов смещения.

Если использовать двухтактный выход можно добиться хорошего уровня громкости и неплохой частотной характеристики. Данная схема выполнена на трёх распространённых кремниевых приборах КТ 315, но в устройстве можно использовать и другие полупроводники. Большим плюсом схемы является то, что она может работать на низкоомную нагрузку. В качестве источника звука можно использовать миниатюрные динамики с сопротивлением от 4 до 8 ом.

Устройство можно использовать совместно с плеером, тюнером или другим бытовым прибором. Напряжение питания 9 В можно получить от батарейки типа «Крона». Если в выходном каскаде использовать КТ 815, то на нагрузке 4 ома можно получить мощность до 1 ватта. При этом напряжение питания нужно будет увеличить до 12 вольт, а выходные элементы смонтировать на небольших алюминиевых теплоотводах.

Схема простого усилителя звука на одном транзисторе

Получить хорошие электрические характеристики в усилителе, собранном на одном полупроводнике практически невозможно, поэтому качественные устройства собираются на нескольких полупроводниковых приборах. Такие конструкции дают на низкоомной нагрузке десятки и сотни ватт и предназначены для работы в Hi-Fi комплексах. При выборе устройства может возникнуть вопрос, на каких транзисторах можно сделать усилитель звука. Это могут быть любые кремниевые или германиевые полупроводники. Широкое распространение получили УНЧ, собранные на полевых полупроводниках. Для устройств малой мощности с низковольтным питанием можно применить кремниевые изделия КТ 312, КТ 315, КТ 361, КТ 342 или германиевые старых серий МП 39-МП 42.

Усилитель мощности своими руками на транзисторах можно выполнить на комплементарной паре КТ 818Б-КТ 819Б. Для такой конструкции потребуется предварительный блок, входной каскад и предоконечный блок. Предварительный узел включает в себя регулировку уровня сигнала и регулировку тембра по высоким и низким частотам или многополосный эквалайзер. Напряжение на выходе предварительного блока должно быть не менее 0,5 вольта. Входной узел блока мощности можно собрать на быстродействующем операционном усилителе. Для того чтобы раскачать оконечную часть потребуется предоконечный каскад, который собирается на комплементарной паре приборов средней мощности КТ 816-КТ 817. Конструкции мощных усилителей низкой частоты отличаются сложной схемотехникой и большим количеством комплектующих элементов. Для правильной регулировки и настройки такого блока потребуется не только тестер, но осциллограф, и генератор звуковой частоты.

Современная элементная база включает в себя мощные MOSFET приборы, позволяющие конструировать УНЧ высокого класса. Они обеспечивают воспроизведение сигналов в полосе частот от 20 Гц до 40 кГц с высокой линейностью, коэффициент нелинейных искажений менее 0,1% и выходную мощность от 50 W и выше. Данная конструкция проста в повторении и регулировке, но требует использования высококачественного двухполярного источника питания.

Источник

Как работает усилитель на транзисторе

Транзистор — это полупроводниковый прибор, который позволяет генерировать, создавать и усиливать электрические колебания. С помощью него можно усилить любой электрический сигнал. Разберем типовую. схему включения биполярного n-p-n транзистора.

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.

Как именно определяется схема включения? Входящий сигнал подается на базу и эмиттер, а выходящий снимается с коллектора и эмиттера. То есть, по сути, общий контакт эмиттер. Поэтому схема называется с общим эмиттером. Эмиттер – это силовая часть транзистора, которая позволяет усилить сигнал по максимуму.

Данная схема имеет один каскад усиления.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Можно подключить как левый канал, так и правый и оба сразу.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.

По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.

Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Ток, который протекает через R1 и R2 поступает на базу транзистора VT1, который потом уходит через эмиттер, тем самым его открывая. Это называется базовое смещение транзистора, то есть его открытие. Напряжение смещения определяет рабочую точку. В данном случае усилитель А класса.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.


А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Также от рабочей точки зависит и чувствительность усилителя.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.

Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Выход усилителя

На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.

Однако и тут есть много нюансов.

Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.

Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.

Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.

В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h21э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Как собрать схему

Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.

Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.

Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.

Как проверить работу схемы

Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.

Источник

Оцените статью
Частотные преобразователи
Adblock
detector