Автоматические воздушные выключатели
Автоматические воздушные выключатели (автоматы) служат для автоматического отключения электрической цепи при возникновении в ней перегрузки, короткого замыкания, снижении напряжения ниже установленного значения, изменении направления передачи энергии. Они применяются также в качестве коммутирующих аппаратов ручного управления для нечастых включений и отключений потребителей электрической энергии, например, электродвигателей небольшой мощности. «Воздушными» автоматические выключатели называют потому, что гашение электрической дуги на коммутирующем контакте происходит в воздушной среде. Узел защиты с автоматическим выключателем (АВ) рассмотрен в п. 5.1, рис. 5.1а.
В зависимости от типа АВ может выполнять одну или несколько функций защиты. Например, установочный автомат в большинстве исполнений защищает электрическую цепь от короткого замыкания и от перегрузки. Для этого в нем предусмотрены воспринимающие элементы – расцепители, аналогичные по принципу действия воспринимающим элементам электромагнитного реле максимального тока и электротеплового реле. Автомат, защищающий электрическую цепь от чрезмерного снижения напряжения, имеет рацепитель, подобный воспринимающему элементу электромагнитного реле минимального напряжения.
Максимальный расцепитель (реагирующий на ток короткого замыкания) и минимальный расцепитель (реагирующий на снижение напряжения) по существу представляет собой электромагнитный механизм (см. [1], п. 4.1) с якорем, втягивающимся в катушку под действием электромагнитной силы тяги. Якорь воздействует на защелку механической передачи (см. [1], п. 3.2), которую (МП) называют механизмом свободного расцепления. Для этого механизма предусматривают также ручной привод, чтобы человек мог осуществлять включение и выключение автомата.
В автоматических выключателях, выполняющих функцию защиты от изменения направления передачи энергии (от «обратного тока», от «обратной мощности») есть независимый расцепитель, выполненный как электромагнитный механизм. В некоторых автоматах используются расцепители, работающие по принципу электродинамического преобразователя (см. [1], п. 3.4.), а также полупроводниковые расцепители.
Автоматический воздушный выключатель с несколькими видами защит представлен структурной схемой на рис. 5.7.
Автоматический воздушный выключатель (АВВ) воздействует на контролируемую им электрическую цепь (ЭЦК) коммутирующим контактом (КК), изменяя сопротивление (RK) цепи. При разомкнутом КК приемник электрической энергии (ПЭЭ) отключен от питания со стороны источника электрической энергии (ИЭЭ). Количество коммутирующих (главных) контактов может быть от одного до трех. В контактной системе предусматривают устройства гашения электрической дуги, обычно, дугогасительные решетки (см. [1], п. 2.8). В некоторых автоматах устанавливают дополнительные дугогасительные контакты, и могут быть предусмотрены вспомогательные контакты для коммутации слаботочных цепей сигнализации и управления.
В зависимости от типа автомата его узел расцепителей (УР) состоит из определенной комбинации расцепителей из следующего состава:
Р1 – расцепитель минимального напряжения U (минимальный расцепитель, реагирующий на снижение напряжения);
Р2 – расцепитель максимального тока I (максимальный расцепитель, реагирующий на ток короткого замыкания);
Р3 –независимый расцепитель, на который подается сигнал Uнпэ, несущий информацию, например, об изменении направления передачи энергии в цепи ЭЦП;
РТ – расцепитель тока перегрузки (тепловой расцепитель, реагирующий на ток пергрузки).
Узел УР установочного автомата с комбинированным расцепителем состоит из расцепителей Р2 и РТ. Универсальный автомат имеет расцепители Р1, Р2. В зависимости от назначения и по составу узла расцепителей выделяют также максимальные автоматы по току, минимальные автоматы по току, максимальные автоматы, реагирующие на производную тока по времени, и др. [9]. Для построения селективно действующей защиты в АВ предусматривают возможность регулировки тока и времени срабатывания.
Каждый из расцепителей независимо воздействует на механизм свободного расцепления (МСР), снимая упор с защелки механической передачи (см. [1] п. 3.2). Это приводит к размыканию коммутирующих контактов КК. Поэтому отключение поврежденного участка электрической цепи ЭЦК и приемника ПЭЭ произойдет тогда, когда хотя бы один из контролируемых параметров цепи ЭЦК выйдет за пределы области допустимых значений, определенной соответствующими уставками расцепителей. Включение автомата для замыкания электрической цепи ЭЦК и отключение автомата для размыкания цепи производится человеком воздействиями хвкл и хотк на рычажный или кнопочный орган ручного управления (ОрУ) автомата (рис. 5.7).
На рис. 5.8а приведена электрическая схема, иллюстрирующая подключение установочного автомата к трехфазной сети и его условное обозначение на схеме. Действие автомата (QF) при автоматическом отключении двигателя (М) комбинированным расцепителем максимального тока и тока перегрузки представляют с помощью времятоковой характеристики, которую приводят в паспорте автомата. Типовой вид времятоковой (защитной) характеристики установочного автомата с комбинированным расцепителем изображен на рис. 5.8б.
Участок a-b времятоковой характеристики создается электротепловым расцепителем, выполняющим функцию защиты по току перегрузки при I >IРТ, где IРТ — уставка тока срабатывания электротеплового расцепителя (при tср>>ТР – см. п. 5.3). Участок c-d обусловлен действием электромагнитного расцепителя максимального тока. Время срабатывания τср автоматического выключателя от электромагнитного расцепителя практически не зависит от силы тока I, если сила тока превышает уставку IРЭМ электромагнитного расцепителя.
В зависимости от быстродействия выделяют: 1) нормальные автоматы, собственное время срабатывания которых составляет 0,02…0,1 с; 2) селективные автоматы, обеспечивающие выдержку на отключение до 1 с; 3) быстродействующие автоматы, время срабатывания которых составляет тысячные доли секунды.
Автоматы выпускаются на переменные напряжения от 220 до 660 В и постоянные напряжения от 110 до 440 В. Наибольшее применение получили автоматы следующих серий:
АЗ000 – наиболее распространенная серия. Рассчитаны на переменные напряжения 380, 660 В, постоянные напряжения до 440 В. Отключаемые токи (коммутационная способность) до 60 кА.
АЕ1000, АЕ2000 — для защиты цепей и электроприемников от перегрузки и коротких замыканий. Напряжения: переменные 380, 660 В, постоянные 110, 220 В. Отключаемые токи от 1 до 10 кА.
«Электрон» — для установки в распределительных устройствах на постоянное напряжение до 440 В и переменное до 660 В. Отключаемый ток от 50 до 160 кА.
Автоматические воздушные выключатели серии АП-50 применяют на напряжение до 500 В переменного тока и до 220 В постоянного тока. Ручной привод имеет две кнопки – одну на включение, другую на отключение автомата. Выключатель имеет электромагнитный расцепитель и электротепловой расцепитель. Номинальный ток расцепителей до 50 А. Уставку электротеплового расцепителя можно регулировать на 30…40% в сторону уменьшения относительно номинального тока.
Автоматы выбирают по числу полюсов, по номинальным значениям тока и напряжения. Номинальные значения напряжения UНав и тока IНав автомата по отношению к номинальному значению напряжения сети UНсети и номинальному току нагрузки (двигателя) IНдв должны удовлетворять следующим условиям:
Уставки IРТ , IРЭМ токов для защиты двигателя электропривода обычно определяют следующим образом:
для электротеплового расцепителя (защита от перегрузки) – по номинальному току двигателя IНдв,
для электромагнитного расцепителя (защита от короткого замыкания) – по наибольшему значению тока какого-либо переходного процесса Iпер (пуск, реверс, торможение),
Предельный ток отключения автомата должен быть не менее возможного тока короткого замыкания в цепи.
Устройства защиты двигателя мотор-автоматы (серии MS, GV, отечественных аналогов пока нет) с комбинированным расцепителем специально разработаны для применения в цепях защиты электродвигателей. Они имеют некоторые особенности:
• выпускаются только в трехполюсном исполнении;
• рассчитаны на номинальные токи от 16 до 100 А;
• номинальный ток двигателя устанавливается на автомате (серии GV) с помощью регулироволчного диска;
• имеют точную подстройку теплового расцепителя;
• уставка электромагнитного расцепителя составляет, как правило,
(12 … 14)IНав, что соответствует работе автомата на индуктивную нагрузку (режим пуска АС-3);
• выключатели имеют высокую электродинамическую стойкость – до 100 кА;
• выключатели имеют на корпусе рычаг или кнопки ручного включения и отключения нагрузки;
• конструкция корпуса позволяет объединить в единый компактный блок автомат и согласованный с ним по габаритам пускатель;
• выключатели имеют либо встроенные, либо навесные быстромонтируемые дополнительные контакты, срабатывающие при перегрузках и короткихзамыканиях;
• глубина защиты электродвигателя может быть повышена за счет отдельно поставляемых быстромонтируемых элементов – независимого расцепителя и реле минимального напряжения.
10 Лекция 10. Воздушные автоматические выключатели
Содержание лекции: общие сведения об автоматических выключателях. Классификация. Конструкции. Параметры выключателей с микропроцессорным расцепителем.
Цель лекции: изучение конструкции автоматических воздушных выключателей.
10.1 Общие сведения. Классификация
Автоматический воздушный выключатель (автомат) – аппарат, предназначенный для автоматического отключения цепей при аварийных режимах, а также нечастых (от 6 до 30 раз в сутки) коммутаций электрических цепей. Автоматические выключатели изготовляют для цепей переменного до 1000В и постоянного тока до 440В одно-, двух-, трех — и четырехполюсном исполнении на номинальные токи от 6,3 до 6300 А.
Автоматические выключатели имеют реле прямого действия, называемые расцепителями. Расцепители обеспечивают отключение автомата при перегрузках, КЗ и снижении напряжения. Отключение может происходить без выдержки времени или с выдержкой.
По времени отключения выключатели различаются на следующие типы:
— нормальные выключатели — время срабатывания, в зависимости от номинального тока и конструкции лежит в пределах 0,02-0,1 сек.;
— селективные – отключение происходит после получения импульса на срабатывания и перед отключением имеют выдержку времени до 1 сек.;
— быстродействующие выключатели – время их срабатывания не должно превосходить 0,005 сек.
Нормальные и селективные автоматические выключатели токоограничивающим действием не обладают. Быстродействующие выключатели, так же как предохранители, обладают токоограничивающим действием, так как отключают цепь до того, как ток в ней достигнет ударного значения.
Селективные автоматические выключатели позволяют осуществить селективную защиту сетей путем установки автоматических выключателей с разными выдержками времени: наименьшей у потребителя и ступенчато возрастающей к источнику питания.
В некоторых случаях требуется комбинированная защита электрической цепи – максимальная по току и минимальная по напряжению. Автоматы, удовлетворяющие этому требованию, называются универсальными.
Автоматы общепромышленного, коммерческого и бытового назначения обычно имеют лишь максимально- токовую защиту, отрегулированную на заводе. В эксплуатации эти характеристики не могут быть изменены. Такие автоматы называются установочными.
Современные выключатели с номинальным током более 250А, могут быть снабжены электронными расцепителями. В этих выключателях потребителю предоставлена возможность самому производить настройку уставок расцепителей. Могут быть отрегулированы токи теплового и электромагнитного расцепителя, а также и время их срабатывания, что позволяет надежно отстроить выключатель от пусковых токов и обеспечить селективность срабатывания защиты.
10.2 Конструкции автоматических выключателей
Основные элементы автоматического выключателя и их взаимодействие рассмотрим по принципиальной схеме (рисунок 10.1).
Рисунок 10.1- Принципиальная схема автоматического выключателя
Контактная система выключателей на большие токи выполняется двухступенчатой и состоит из главных 11, 5 и дугогасительных контактов 7.
Главные контакты должны иметь малое переходное сопротивление, так как по ним проходит основной ток. Обычно это массивные медные контакты с серебряными накладками на неподвижных контактах и металлокерамическими накладками на подвижных контактах. Дугогасительные контакты замыкают и размыкают цепь, поэтому они должны быть устойчивы к возникающей дуге, поверхность этих контактов металлокерамическая. При номинальных токах до 630А контактная система одноступенчатая, т. е. контакты играют роль как главных, так и дугогасительных. На рисунке 10.1 выключатель показан в отключенном положении. Чтобы его включить, вращают рукоятку 2 или подают напряжение на электромагнитный привод 1. Возникающее усилие перемещает рычаги 3 вправо, при этом поворачивается несущая деталь 13, замыкаются сначала дугогасительные контакты 7 и создается цепь тока через эти контакты и гибкую связь 12, а затем главные контакты 5 — 11. После завершения операции выключатель удерживается во включенном положении защелкой 14 с зубцами 15 и пружиной 16.
Отключают выключатель рукояткой 2, приводом 1 или автоматически при срабатывании расцепителей. Максимальный расцепитель 17 срабатывает при протекании по его обмотке YAT1 тока КЗ. Создается усилие, преодолевающее натяжение Р пружины 16, рычаги 3 переходят вверх за мертвую точку, в результате чего автоматический выключатель отключается под действием отключающей пружины 4.Этот же расцепитель выполняет функции независимого расцепителя. Если на нижнюю обмотку YAT2 подать напряжение кнопкой SB, он срабатывает и осуществляет дистанционное отключение. При снижении или исчезновении напряжения срабатывает минимальный расцепитель 18 и также отключается автоматический выключатель. При отключении сначала размыкаются главные контакты, и весь ток переходит на дугогасительные контакты. На главных контактах дуга не образуется. Дугогасительные контакты 7 размыкаются, когда главные находятся на достаточном расстоянии. Между дугогасительными контактами образуется дуга, которая выдувается вверх в дугогасительную камеру 8, где и гасится. Дугогасительные камеры выполняются чаще всего со стальными пластинами (эффект деления длинной дуги на короткие), а для автоматов на большие токи с лабиринтно-щелевыми (эффект гашения дуги в узкой щели). Втягивание дуги в камеру осуществляется магнитным дутьем. Материал камеры должен обладать высокой дугостойкостью. При протекании тока КЗ через включенный автоматический выключатель между контактами возникают значительные электродинамические силы, превышающие силы контактных пружин 6 и 10, которые могут оторвать один контакт от другого, а образовавшаяся дуга сварить их. Чтобы избежать самопроизвольного отключения, применяют электродинамические компенсаторы 9, в виде изогнутых петлей шинок. Токи в шинках 9 имеют разное направление, что создает электродинамическую силу, увеличивающую нажатие в контактах.
Рычаги 3 играют роль механизма свободного расцепления, который обеспечивает отключение автоматического выключателя в любой момент времени, в том числе при необходимости и в процессе включения. Если выключатель включается на существующее КЗ, то максимальный расцепитель 17 срабатывает и переводит рычаги 3 вверх за мертвую точку, нарушая связь привода 1 (или 2) с подвижной системой автоматического выключателя, который отключается пружиной 4, несмотря на то, что приводом будет передаваться усилие на включение. Принципиально все современные выключатели выполнены по приведенной выше схеме. Могут отличаться дизайном, конструктивными и проводниковыми материалами и устройством защит.
Автоматические выключатели в соответствии с современным стандартом характеризуются следующими основными параметрами:
In — номинальный ток выключателя. Это ток, длительное протекание которого не вызывает нагрев выключателя сверх допустимой температуры.
Icu — номинальная предельная отключающая способность короткого замыкания. Это действующее значение максимального тока КЗ, который выключатель еще способен отключить, сохраняя при этом свою работоспособность.
Ics — Номинальная рабочая отключающая способность короткого замыкания. Это действующее значение тока КЗ, который выключатель способен повторно отключить после только что отключенного КЗ, сохраняя при этом свою работоспособность.
Icm — Номинальная включающая способность короткого замыкания. Это максимальное значение тока КЗ (ударный ток КЗ), которое выключатель способен выдержать, сохраняя при этом свою работоспособность.