Зависимость напряжения на обкладках конденсатора электроемкостью

Зависимость напряжения на обкладках конденсатора электроемкостью

Исследовалась зависимость напряжения на обкладках конденсатора от заряда этого конденсатора. Результаты измерений представлены в таблице.

q, мКл 0,01 0,02 0,03 0,04 0,05
U, В 0,04 0,12 0,16 0,22 0,24

Погрешности измерений величин q и U равнялась соответственно 0,005 мКл и 0,01 В.

Выберите все утверждения, соответствующие результатам этих измерений.

1) Электроёмкость конденсатора примерно равна 5 мФ.

2) Электроёмкость конденсатора примерно равна 200 мкФ.

3) С увеличением заряда напряжение уменьшается.

4) Для заряда 0,06 мКл напряжение на конденсаторе составит 0,3 В.

5) Напряжение на конденсаторе не зависит от заряда.

Проверим справедливость предложенных утверждений.

1, 2) Электроёмкость конденсатора можно найти по формуле :

q, мКл 0,01 0,02 0,03 0,04 0,05
U, В 0,04 0,12 0,16 0,22 0,24
C, мкФ 250 167 188 182 208

Она примерно равна 200 мкФ.

3) С увеличением заряда напряжение увеличивается.

4) Для заряда 0,06 мКл напряжение на конденсаторе составит

5) Напряжение на конденсаторе возрастает с увеличением заряда.

Таким образом, верными являются утверждения под номерами 2 и 4.

Источник

Зависимость напряжения на обкладках конденсатора электроемкостью

Исследовалась зависимость напряжения на обкладках конденсатора от заряда этого конденсатора. Результаты измерений представлены в таблице.

0,01 0,02 0,03 0,04 0,05
U, В 0,04 0,12 0,16 0,22 0,24

Погрешности измерений величин q и U равнялась соответственно 0,005 мКл и 0,01 В.

Выберите все утверждения, соответствующие результатам этих измерений.

1) Электроёмкость конденсатора примерно равна 5 мФ.

2) Электроёмкость конденсатора примерно равна 200 мкФ.

3) С увеличением заряда напряжение увеличивается.

4) Для заряда 0,06 мКл напряжение на конденсаторе составит 0,5 В.

5) Напряжение на конденсаторе не зависит от заряда.

Проверим справедливость предложенных утверждений.

1, 2) Электроёмкость конденсатора можно найти по формуле:

3) С увеличением заряда напряжение увеличивается.

4) Для заряда 0,06 мКл напряжение на конденсаторе составит

5) Напряжение на конденсаторе возрастает с увеличением заряда.

Таким образом, верными являются утверждения под номерами 2 и 3.

Источник

Электроемкость — основные понятия, формулы и определение с примерами

Содержание:

Электроемкость:

Сообщая телу определенный заряд, мы изменяем его потенциал. Это изменение непосредственно связано со значением заряда, сообщаемого телу.

Для исследования зависимости потенциала тела от его заряда проведем опыт с электрометром, корпус которого соединен с поверхностью Земли. ‘Гикая система может измерять потенциал тела относительно Земли. Укрепим на стержне этого электрометра пустотелый металлический шар и будем сообщать ему заряд с помощью маленького металлического шарика на изоляционной ручке. Если коснуться заряженным шариком внутренней поверхности металлического шара, то весь его заряд перейдет на шар, а стрелка электрометра покажет увеличение потенциала шара. Последовательно повторяя опыт с переносом заряда на большой шар, заметим, что каждый раз его потенциал увеличивается (рис. 1.28).

Применяя более точные способы измерения заряда и потенциала, можно установить, что потенциал возрастает пропорционально возрастанию заряда. Потенциал пропорционален заряду шара. Результаты одного из таких опытов отражены на графике (рис 1.29).

Если ни стержне электрометра укрепим шар большего (меньшего) диаметра и продолжим опыты (рис. 1.31), то увидим, что скорость зарядки изменилась, соответственно уменьшилась (увеличилась).
Процесс электризации шара большего диаметра отображен графиком на рисунке 1.32.

Сопоставив графики, которые иллюстрируют процессы зарядки шаров различных диаметров (рис. 1.30 и 1.32), увидим, что графики имеют различный наклон относительно горизонтальной оси. Это свидетельствует о том, что при одинаковых значениях заряда шары разных диаметров будут иметь разные потенциалы. Оказывается, что на князь между зарядом и потенциалом шара существенно влияют геометрические размеры шаров.

Вам понравится:  Маркировка на упаковке розеток


Рис. 130. Электризация шара большего диаметра

Потенциал металлического шара пропорционален его заряду; коэффициент пропорциональности для различных шаров разный.

Анализируя результаты опытов и соответствующие графики, можно сделать выводы:

  1. потенциал каждого шара пропорционален его заряду:
  2. для тел различных размеров коэффициент пропорциональности разный.

Установлено, что этот коэффициент для каждого тела имеет вполне определенное значение, что отражает способность тела накапливать электрический заряд. Физическая величина, равная отношению электрического заряда, сообщенного телу, к его потенциалу, называется электроемкостью тела.

где C — электроемкость проводника; Q — заряд; φ — потенциал.

Для измерения электроемкости в физике применяют единицу, которую называют фарад (Ф).

Тело имеет электроемкость в 1 фарад, если при изменении его заряда на 1 кулон потенциал изменяется па 1 вольт:

Электроемкость 1 фарад имеют тела, у которых при изменении заряда на 1 кулон потенциал изменяется на 1 вольт.

  • 1Ф — довольно большое значение электроемкости. Например, электроемкость Земли, имеющей радиус 6400 км, составляет всего 7 ∙ 10 4 Ф. Поэтому на практике используют единицу электроемкости, кратную фараду:
  • 1 микрофарад = 1 мкФ = 10 -5 Ф.
  • 1 пикофарад = 1 пФ = 10 -12 Ф.

Два шара, электроемкости которых 50 мкф и 80 мкФ, а потенциалы 120 В и 50 В соответственно, соединяют проводом. Найти потенциал шаров после соединения.

После соединения шаров произойдет перераспределение зарядов между ними так, что их потенциалы станут одинаковыми. Согласно закону сохранения электрических зарядов

Отсюда

или

Подставив значения физических величин и произведя расчеты, получим:

Ответ: после соединения шары будут иметь потенциал 77 В.

Конденсатор

Чтобы экспериментально определить электроемкость проводника, как и его потенциал, нужно создать условия, исключающие влияние всех окружающих тел, которые, влияя па тело, изменяют его потенциал и электроемкость.

Это утверждение можно проверить опытом.
Укрепим на стержне электрометра металлический шар и сообщим ему определенный заряд. Стрелка прибора отклонится от положения равновесия и покажет определенное значение потенциала относительно земли.

Поднесем к шару металлическую пластину, соединенную проводником с землей (рис. 1.32).


Pиc. 132. Заземленная металлическая пластина влияет на электроемкость шара

Показания стрелки электрометра уменьшатся. Поскольку заряд шара в опыте не изменялся, то уменьшение потенциала свидетельствует об увеличении электроемкости шара. Изменение потенциала и соответственно электроемкости шара будет наблюдаться и в случае изменения расстояния между шаром и пластиной.

Таким образом, определяя электроемкость тела, необходимо учитывать также наличие окружающих тел. Поскольку на практике это сделать трудно, то применяют систему из двух или более проводников произвольной формы, разделенных диэлектриком. В этом случае электрические свойства такой системы проводников и диэлектрика не зависят от окружающих тел. Такую систему называют конденсатором. Простейшим для изучения и расчетов является конденсатор из двух металлических пластин, разделенных диэлектриком.

Электроемкость конденсатора, в отличие от обособленного тела, определяется по разности потенциалов между пластинами:

где Q — заряд одной пластины; (φl— φ2) и ∆φ — разность потенциалов между пластинами.

Слово конденсатор обозначает накопитель. В электричестве понимают как «накопитель электрических зарядов».

Какую электроемкость имеет конденсатор, если на его обкладках накапливается заряд 50 нКл при разности потенциалов 2,5 кВ?

Решение
Используем формулу емкости конденсатора:

Подставим значения физических величин:

Ответ: электроемкость данного конденсатора 20 пФ.

Первый конденсатор был создан в 1745 г. голландским ученым Питером ван Мушенбруком, профессором Лейденского университета. Проводя опыты по электризации различных тел, он опустил проводник от кондуктора электрической машины в стеклянный графин с водой (рис. 1.33).

Вам понравится:  Как подключить антенный кабель к розетке веркель
Питер ван Мушенбрук (1692-1781) — голландский физик; работы посвящены электричеству, теплоте, оптике; изобрел первый конденсатор — лейденскую банку и провел опыты с ней.


Pиc. 133. Из истории открытия простейшего конденсатора лейденской банки

Случайно коснувшись пальцем этого проводника, ученый ощутил сильный электрический удар. В дальнейшем жидкость заменили металлическими проводниками, укрепленными на внутренней и внешней поверхностях банки. Такой конденсатор назвали лейденской банкой. В таком первозданном виде она использовалась в лабораториях более 200 лет.

Более совершенные конденсаторы применяются в современной электротехнике и радиоэлектронике. Их можно найти в преобразователях напряжения (адаптерах), питающих постоянным электрическим током электронные приборы, в радиоприемниках и радиопередатчиках как поставные части колебательных контуров. Они применяются практически во всех функциональных узлах электронной аппаратуры. В фотовспышках конденсаторы накапливают большие заряды, необходимые для действия вспышки.

В электротехнике конденсаторы обеспечивают необходимый режим работы электродвигателей, автоматических и релейных приборов, линий электропередач и т. п.

Во многих широкодиапазонных радиоприемниках конденсаторы переменной емкости (рис. 1.34) позволяют плавно изменять собственную частоту колебательного контура н процессе поиска передачи определенной радиостанции.


Рис. 134. Конденсатор переменной емкости с воздушным диэлектриком

Весьма распространены конденсаторы варикапы, электроемкость которых можно изменять электрическим способом. Конструктивно они весьма схожи с полупроводниковыми диодами.

Конденсаторы могут быть плоскими, трубчатыми, дисковыми. В качестве диэлектрика в них используют парафинированную бумагу, слюду, воздух, пластмассы, керамику (рис. 1.35).


Рис. 1.35. Различные типы конденсаторов

Искусственно созданные диэлектрические материалы позволяют создавать конденсаторы больших емкостей при небольших размерах.

Электроемкость плоского конденсатора

Плоским конденсатором обычно называют систему плоских проводящих пластин — обкладок, разделенных диэлектриком. Благодаря простоте конструкции такого конденсатора легко рассчитывать его емкость и получать значения, подтверждаемые опытами. Для этого достаточно знать его геометрические параметры и электрические свойства диэлектрика между его пластинами. Зависимость электроемкости плоского конденсатора от указанных параметров можно исследовать в школьной лаборатории.

Создадим плоский конденсатор из двух плоских пластин. Для этого одну пластину укрепим на стержне электрометра, я другую — па изоляционной подставке, присоединив ее проводником к корпусу электрометра (рис. 1.36.). В такой системе электрометр будет измерять разность потенциалов между пластинами, образующими плоский конденсатор.


Pиc. 136. Плоский конденсатор, присоединенный к электрометру

Проводя исследования, нужно помнить, что при постоянном значении заряда на пластинах уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора, и наоборот.

При постоянном значении заряда на пластинах уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора, и наоборот.

Сообщим пластинам некоторый заряд и отметим показания стрелки прибора. Когда начнем сближать пластины, уменьшая расстояние между ними, показания стрелки начнут уменьшаться. Это будет свидетельством того, что при уменьшении расстояния между пластинами электроемкость конденсатора будет увеличиваться. При увеличении расстояния между пластинами показания стрелки будут увеличиваться, что свидетельствует об уменьшении электроемкости.

Электроемкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками.

где d — расстояние между обкладками.

Эту, зависимость можно изобразить на графике как обратно пропорциональную зависимость (рис. 1.37).

Электроемкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками.


Pиc. 137. График зависимости электроемкости и плоского конденсатора от расстояния между пластинами

Будем смещать одну пластину относительно другой в параллельных плоскостях, не изменяя расстояния между ними. При атом площадь перекрытия между пластинами будет изменяться (рис. 1.38). Изменение разности потенциалов, отмеченное электрометром, засвидетельствует изменение электроемкости.


Pиc. 138. При расчетах электроемкости плоского конденсатора учитывают площадь перекрытия пластин

Вам понравится:  Как подключить сетевой кабель к телефонной розетке

Увеличение площади перекрытия приведет к увеличению электроемкости, при уменьшении — наоборот.

Электроемкость плоского конденсатора пропорциональна площади пластин, которые перекрываются.

где S — площадь пластин, которые перекрываются.

Электроемкость плоского конденсатора пропорциональна площади пластин, которые перекрываются.

Эту зависимость можно изобразить графиком прямой пропорциональной зависимости (рис. 1.39).


Pиc. 139. График зависимости электроемкости плоского конденсатора от площади его пластин

Возвратив пластины в первоначальное положение, внесем в пространство между обкладками пластину из диэлектрика. Электрометр отметит уменьшение разности потенциалов между пластинами, что свидетельствует об увеличении электроемкости. Если внести пластину из другого диэлектрика (другая диэлектрическая проницаемость), то изменение электроемкости будет другим.

Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика между обкладками.

где ε — диэлектрическая проницаемость диэлектрика.

Эта зависимость изображена графиком на рисунке 1.40.


Рис. 1.40. График зависимости электроемкости плоского конденсатора от диэлектрической проницаемости диэлектрика

Результаты описанных выше исследований можно обобщить формулой электроемкости плоского конденсатора

где ε — относительная диэлектрическая проницаемость диэлектрика; ε— электрическая постоянная; d — расстояние между пластинами; S — площадь пластины.

Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика.

Соединение конденсаторов в батареи

Для получения необходимых значений электроемкости конденсаторы соединяют в батареи. На практике встречается параллельное, последовательное и смешанное соединение конденсаторов.

При параллельном соединении конденсаторов все обкладки соединяются в две группы, в каждую из которых входит по одной обкладке каждого конденсатора. На рисунке 1.41 приведена схема такого соединения. При таком соединении каждая группа обкладок имеет одинаковый потенциал.


Pиc 1.41. Схема параллельного соединения конденсаторов

Если батарею параллельно соединенных конденсаторов зарядить, то между обкладками каждого конденсатора будет одинаковая разность потенциалов. Общий заряд батареи будет равен сумме зарядов каждого из конденсаторов, входящих в батарею:

Если учесть, что то


или

Электроемкость батареи параллельно соединенных конденсаторов равна сумме электроемкостей всех конденсаторов.

При последовательном соединении конденсаторов соединяются между собой только две пластины разных конденсаторов. Если в каждом конденсаторе пластины обозначить буквами А и В, то при последовательном соединении пластина B1 будет соединена с пластиной A2, пластина B2 -с пластиной А3 и т. д. (рис. 1.43).

Если цепочку последовательно соединенных конденсаторов присоединить к источнику тока, то об-
кладка A1 и обкладка B1 будут иметь одинаковые по значению заряды +Q и -Q. Благодаря этому все обкладки внутри цепочки будут иметь такие же, но попарно противоположные по знаку заряды:


Pиc. 1.42. Последовательное соединение конденсаторов

Вместе с тем общая разность потенциалов на концах цепочки будет равна сумме разностей потенциалов на каждом конденсаторе:

Учитывая, что будем иметь

Разделим левую и правую части равенства на Q:

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно сумме обратных значений электроемкостей каждого из конденсаторов.

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно с

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно сумме обратных значений электроемкостей каждого из конденсаторов.

При последовательном соединении конденсаторов разной электроемкости C1, C2, C3, . Сn общая электроемкость С будет меньше электроемкости самого меньшего конденсатора.
Если C1

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Оцените статью
Частотные преобразователи