Конденсатор принцип работы схема

Содержание
  1. Что такое конденсатор и как он работает?
  2. Что такое конденсатор?
  3. Конструкция и принцип работы
  4. Свойства
  5. Основные параметры и характеристики
  6. Классификация
  7. Маркировка
  8. Обозначение на схемах
  9. Соединение конденсаторов
  10. Применение
  11. Конденсатор: что это такое и для чего он нужен
  12. Содержание статьи
  13. Принцип работы конденсаторов
  14. Устройство конденсаторов
  15. Пакетная конструкция
  16. Трубчатая конструкция
  17. Дисковая конструкция
  18. Литая секционированная конструкция
  19. Рулонная конструкция
  20. Где используются конденсаторы
  21. Поведение конденсатора в цепях постоянного и переменного тока
  22. Виды и классификация конденсаторов
  23. Электролитические конденсаторы
  24. Пленочные и металлопленочные конденсаторы
  25. Керамические конденсаторы
  26. Бумажные и металлобумажные конденсаторы
  27. Основные параметры конденсаторов
  28. Емкость
  29. Удельная емкость
  30. Плотность энергии
  31. Номинальное напряжение
  32. Полярность
  33. Паразитные параметры конденсаторов
  34. Обозначение конденсаторов на схеме
  35. Особенности соединения нескольких конденсаторов в цепи
  36. Последовательное
  37. Параллельное
  38. Маркировка конденсаторов
  39. Как проверить работоспособность конденсатора
  40. Проверка полярного конденсатора
  41. Проверка неполярного конденсатора
  42. Как зарядить и разрядить конденсатор

Что такое конденсатор и как он работает?

Если вы рассмотрите печатную плату даже самого простого электронного устройства, то обязательно увидите конденсатор, а чаще всего встретите множество этих элементов. Присутствие этих изделий на различных электронных схемах объясняется свойствами данных радиоэлементов, широким диапазоном функций, которые они выполняют.

В настоящее время промышленность поставляет на рынок конденсаторную продукцию различных видов (рис. 1). Параметры изделий варьируются в широких пределах, что позволяет легко подобрать радиодеталь для конкретной цели.

Рис. 1. Распространённые типы конденсаторов

Рассмотрим более подробно конструкции и основные параметры этих вездесущих радиоэлементов.

Что такое конденсатор?

В классическом понимании конденсатором является радиоэлектронное устройство, предназначенное для накопления энергии электрического поля, обладающее способностью накапливать в себе электрический заряд, с последующей передачей накопленной энергии другим элементам электрической цепи. Устройства очень часто используют в различных электрических схемах.

Конденсаторы способны очень быстро накапливать заряд и так же быстро отдавать всю накопленную энергию. Для их работы характерна цикличность данного процесса. Величина накапливаемого электричества и периоды циклов заряда-разряда определяется характеристиками изделий, которые в свою очередь зависят от типа модели. Параметры этих величин можно определить по маркировке изделий.

Конструкция и принцип работы

Простейшим конденсатором являются две металлические пластины, разделённые диэлектриком. Выступать в качестве диэлектрика может воздушное пространство между пластинами. Модель такого устройства изображена на рис. 2.

Если на конструкцию подать постоянное напряжение, то образуется кратковременная замкнутая электрическая цепь. На каждой металлической пластине сконцентрируются заряды, полярность которых будет соответствоать полярности приложенного тока. По мере накопления зарядов ток будет ослабевать, и в определенный момент цепь разорвётся. В нашем случае это произойдёт молниеносно.

При подключении нагрузки накопленная энергия устремится через нагрузочный элемент в обратном направлении. Произойдёт кратковременный всплеск электрического тока в образованной цепи. Количество накапливаемых зарядов (ёмкость, C) прямо зависит от размеров пластин.

Единицу измерения ёмкости принятоназывать фарадой (Ф). 1 F – очень большая величина, поэтому на практике часто применяют кратные величины: микрофарады (1 мкФ = 10 -6 F ), нанофарады ( 1 нФ = 10 -9 F = 10 -3 мкФ), пикофарады (1 пкФ = 10 -12 F = 10 -6 мкФ). Очень редко применяют величину милифараду (1 мФ = 10 -3 Ф).

Конструкции современных конденсаторов отличаются от рассматриваемой нами модели. С целью увеличения ёмкости вместо пластин используют обкладки из алюминиевой, ниобиевой либо танталовой фольги, разделённой диэлектриками. Эти слоеные ленты туго сворачивают в цилиндр и помещают в цилиндрический корпус. Принцип работы не отличается от описанного выше.

Существуют также плоские конденсаторы, конструктивно состоящие из множества тонких обкладок, спрессованных между слоями диэлектрика в форме параллелепипеда. Такие модели можно представить себе в виде стопки пластин, образующих множество пар обкладок, соединённых параллельно.

В качестве диэлектриков применяют:

  • бумагу;
  • полипропилен;
  • тефлон;
  • стекло;
  • полистирол;
  • органические синтетические плёнки;
  • эмаль;
  • титанит бария;
  • керамику и различные оксидные материалы.

Отдельную группу составляют изделия, у которых одна обкладка выполнена из металла, а в качестве второй выступает электролит. Это класс электролитических конденсаторов (пример на рисунке 3 ниже). Они отличаются от других типов изделий большой удельной ёмкостью. Похожими свойствами обладают оксидно-полупроводниковые модели. Второй анод у них – это слой полупроводника, нанесённый на изолирующий оксидный слой.

Электролитические модели, а также большинство оксидно-полупроводниковых конденсаторов имеют униполярную проводимость. Их эксплуатация допустима лишь при наличии положительного потенциала на аноде и при номинальных напряжениях. Поэтому следует строго соблюдать полярность подключения упомянутых радиоэлектронных элементов.

На корпусе такого прибора обязательно указывается полярность (светлая полоска со значками «–», см. рис. 4) или значок «+» со стороны положительного электрода на корпусах старых отечественных конденсаторов.

Рисунок 4. Обозначение полярности выводов

Срок службы электролитического конденсатора ограничен. Эти приборы очень чувствительны к высоким напряжениям. Поэтому при выборе радиоэлемента старайтесь, чтобы его рабочее напряжение было значительно выше номинального.

Свойства

Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.

В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.

Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.

Основные параметры и характеристики

Ёмкость.

Важным параметром конденсатора является его номинальная ёмкость. Для плоского конденсатора справедлива формула:

С = (ε*ε*S) / d,

где ε – диэлектрическая проницаемость диэлектрика, S – размеры обкладок (площадь пластин), d – расстояние между пластинами (обкладками).

Реальная емкость отдельных элементов обычно невелика, но можно получить конструкцию ёмкостью в несколько фарад, если параллельно соединить огромное число обкладок. В этом случае реальная ёмкость равняется сумме всех ёмкостей обкладок.

Максимальные емкости некоторых конденсаторов могут достигать нескольких фарад.

Удельная ёмкость.

Величина, характеризующая отношение ёмкости к объёму или к массе радиодетали. Данный параметр важен в микроэлектронике, где размеры деталей очень важны.

Номинальное напряжение.

Одной из важных электрических характеристик является номинальное напряжение – значение максимальных напряжений, при которых конденсатор может работать без потери значений других его параметров. При превышении критической величины равной напряжению пробоя происходит разрушение диэлектрика. Поэтому номинальное напряжение подбирают заведомо большее любых возможных максимальных амплитуд синусоидального тока в цепи конденсатора.

Вам понравится:  Выключатель кондиционера по высокому давлению

Существуют характеристики, такие как тангенс угла потерь, температурный коэффициент ёмкости, сопротивление утечки, диэлектрическая абсорбция и др., которые интересны только узким специалистам, а их параметры можно узнать из специальных справочников.

Классификация

Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.

По данному признаку различают следующие типы изделий:

  • вакуумные;
  • с воздушным диэлектриком;
  • радиоэлементы, в которых диэлектриком является жидкость;
  • с твёрдым неорганическим диэлектриком (стекло, слюда, керамика). Характеризуются малым током утечки;
  • модели с бумажным диэлектриком и комбинированные, бумажно-плёночные;
  • масляные конденсаторы постоянного тока;
  • электролитические;
  • категория оксидных конденсаторов, к которым относятся оксидно-полупроводниковые и танталовые конденсаторы;
  • твёрдотельные, у которых вместо жидкого электролита используется органический полимер или полимеризованный полупроводник.

В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.

Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:

  • постоянные конденсаторы, то есть те, которые имеют постоянную емкость;
  • переменные, у которых можно управлять изменением ёмкости механическим способом либо с помощью приложенного напряжения (варикапы и вариконды), а также путём изменения температуры (термоконденсаторы);
  • класс подстроечных конденсаторов, которые используют для подстройки или выравнивания рабочих ёмкостей при настройке контуров, а также с целью периодической подстройки различных схем.

Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.

Рис. 6. Конденсаторы общего назначения

Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:

  • импульсные;
  • пусковые;
  • высоковольтные (см. рис. 7);
  • помехоподавляющие,
  • дозиметрические и др.;

Рис. 7. Высоковольтные конденсаторы

Изображённые на фото устройства могут работать в высоковольтных цепях сравнительно низкой частоты.

Маркировка

Для маркировки отечественных изделий применялась буквенная система. Сегодня распространена цифровая маркировка. В буквенной системе применялись символы:

  • К – конденсатор;
  • Б, К, С, Э и т. д – тип диэлектрика, например: К – керамический, Э – электролитический;
  • На третьем месте стоял символ, обозначающий особенности исполнения.

В данной системе маркировки иногда первую букву опускали.

В новой системе маркировки на первом месте может стоять буква К, а после неё идёт буквенно-цифровой код. Для обозначения номинала, вида диэлектрика и номера разработки используют цифры. Пример такой маркировки показан на рисунке 8. Обратите внимание на то, что на корпусе электролитического конденсатора обозначена полярность включения.

  • Ёмкость от 0 до 999 пФ указывают в пикофарадах, например: 250p:
  • от 1000 до 999999 пФ – в нанофарадах: n180;
  • от 1 до 999 мкФ – в микрофарадах: 2μ5;
  • от 1000 до 999999 мкФ – в миллифарадах: m150;
  • ёмкость, больше значения 999999 мкФ, указывают в фарадах.

Обозначение на схемах

Каждое семейство конденсаторов имеет своё обозначение, позволяющее визуально определить его тип (см. рис. 9).

Рис. 9. Обозначение на схемах

Соединение конденсаторов

Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.

Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )

Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:

Применение

Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:

  • построение цепей обратной связи, фильтров, колебательных контуров;
  • использование в качестве элемента памяти;
  • для компенсации реактивной мощности;
  • для реализации логики в некоторых видах защит;
  • в качестве датчика для измерения уровня жидкости;
  • для запуска электродвигателей в однофазных сетях переменного тока.

С помощью этого радиоэлектронного элемента можно получать импульсы большой мощности, что используется, например, в фотовспышках, в системах зажигания карбюраторных двигателей.

Источник

Конденсатор: что это такое и для чего он нужен

Конденсатор – это устройство, способное накапливать электрический заряд.

Такую же функцию выполняет и аккумуляторная батарея, но в отличие от неё конденсатор может моментально отдать весь накопленный заряд.

Количество заряда, которое способен накопить конденсатор, называют «емкостью». Эта величина измеряется в фарадах.

Содержание статьи

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

Устройство конденсаторов

Конструкции современных конденсаторов отличаются разнообразием, но можно выделить несколько типичных вариантов:

Пакетная конструкция

Используется в стеклоэмалевых, керамических и стеклокерамических конденсаторах. Пакеты образованы чередующимися слоями обкладок и диэлектрика. Обкладки могут изготавливаться из фольги, а могут представлять собой слои на диэлектрических пластинах – напыленный или нанесенный вжиганием.

Каждый пакетный конденсатор имеет верхнюю и нижнюю обкладки, имеющие контакты с торцов пакета. Выводы изготавливаются из проволоки или ленточных полосок. Пакет опрессовывается, герметизируется, покрывается защитной эмалью.

Трубчатая конструкция

Такую конструкцию могут иметь высокочастотные конденсаторы. Они представляют собой керамическую трубку с толщиной стенки 0,25 мм. На ее наружную и внутреннюю стороны способом вжигания наносится серебряный проводящий слой. Снаружи деталь обрабатывается изоляционным веществом. Внутреннюю обкладку выводят на наружный слой для присоединения к ней гибкого вывода.

Дисковая конструкция

Эта конструкция, как и трубчатая, применяется при изготовлении высокочастотных конденсаторов.

Диэлектриком в дисковых конденсаторах является керамический диск. На него вжигают серебряные обкладки, к которым подсоединены гибкие выводы.

Литая секционированная конструкция

Применяется в монолитных многослойных керамических конденсаторах, используемых в современной аппаратуре, в том числе с интегральными микросхемами. Деталь, имеющая 2 паза, изготавливается литьем керамики. Пазы заполняют серебряной пастой, которую закрепляют методом вживания. К серебряным вставкам припаивают гибкие выводы.

Рулонная конструкция

Характерна для бумажных пленочных низкочастотных конденсаторов с большой емкостью. Бумажная лента и металлическая фольга сворачиваются в рулон. В металлобумажных конденсаторах на бумажную ленту наносят металлический слой толщиной до 1 мкм.

Вам понравится:  Включатель или выключатель тумблер

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Функции, выполняемые конденсаторами:

  • фильтрация высокочастотных помех;
  • сведение к минимуму пульсаций;
  • разделение сигнала на постоянные и переменные компоненты;
  • накопление энергии;
  • создание резонанса с катушкой индуктивности, что позволяет усилить сигнал.

Поведение конденсатора в цепях постоянного и переменного тока

В цепях постоянного тока заряженный конденсатор образует разрыв, мешающий протеканию тока. Если напряжение приложить к обкладкам разряженной детали, то ток потечет. При этом конденсатор будет заряжаться, сила тока падать, напряжение на обкладках повышаться. При достижении равенства напряжения на обкладках и источника электропитания течение тока прекращается.

При постоянном напряжении конденсатор удерживает заряд при включенном питании. После выключения заряд сбрасывается через нагрузки, присутствующие в цепи.

Переменный ток заряженный конденсатор тоже не пропускает. Но за один период синусоиды дважды происходит зарядка и разрядка накопителя, поэтому ток получает возможность протекать через конденсаторв периодего разрядки.

Виды и классификация конденсаторов

Конденсаторы различных типов приспособлены к разным условиям работы, направлены на выполнение определенных задач и обладают различными побочными эффектами.

Основной признак, по которому классифицируют конденсатор, – это вид диэлектрика. Именно диэлектрический материал определяет многие характеристики конденсатора.

Электролитические конденсаторы

В электролитических конденсаторах анодом служит металлическая пластина, диэлектриком – оксидная пленка, а катодом – твердый, жидкий или гелеобразный электролит. Наличие гелеобразного электролита делает устройство полярным, то есть ток через него может протекать только в одном направлении. Представители этого семейства – алюминиевые и танталовые конденсаторы.

Алюминиевые электролитические конденсаторы имеют емкость от 0,1 до нескольких тысяч мкФ. Обычно они применяются на звуковых частотах. Электрохимическая ячейка плотно упакована, что обеспечивает большую эффективную индуктивность, которая не позволяет использовать алюминиевые накопители на сверхвысоких частотах.

В танталовых конденсаторах катод изготавливается из диоксида марганца. Сочетание значительной площади поверхности анода и диэлектрических характеристик оксида тантала обеспечивает высокую удельную емкость (емкость в единице объема или массы диэлектрика). Это значит, что танталовые конденсаторы гораздо компактнее алюминиевых такой же емкости.

У танталовых конденсаторов есть свои недостатки. Устройства ранних поколений грешат отказами, возможны возгорания. Они могут произойти при подаче слишком высокого пускового тока, который меняет структурное состояние диэлектрика. Дело в том, что оксид тантала в аморфном состоянии является хорошим диэлектриком. При подаче большого пускового тока оксид тантала из аморфного состояния переходит в кристаллическое и превращается в проводник. Кристаллический оксид тантала еще больше увеличивает силу тока, что и приводит к возгоранию. Современные танталовые конденсаторы производятся по передовым технологиям и практически не дают отказов, не вздуваются, не возгораются.

Пленочные и металлопленочные конденсаторы

Пленочные конденсаторы имеют диэлектрический слой из полимерной пленки, расположенный между слоями металлофольги.

Такие устройства имеют небольшую емкость (от 100 пФ до нескольких мкФ), но могут работать при высоких напряжениях – до 1000 В.

Существует целое семейство пленочных конденсаторов, но для всех видов характерны небольшие емкость и индуктивность. Благодаря малой индуктивности, эти приборы используются в высокочастотных схемах.

Основные различия между конденсаторами с разными типами пленок:

  • Конденсаторы с диэлектриком в виде полипропиленовой пленки применяются в цепях, в которых предъявляются высокие требования к температурной и частотной стабильности. Они подходят для систем питания, подавления ЭМП.
  • Конденсаторы с диэлектриком в виде полиэстеровой пленки обладают низкой стоимостью и способны выдерживать высокие температуры при пайке. Частотная стабильность, по сравнению с полипропиленовыми видами, ниже.
  • Конденсаторы с диэлектриком из поликарбонатной и полистиреновой пленки, которые использовались в старых схемах, сегодня уже неактуальны.

Керамические конденсаторы

В керамических конденсаторах в качестве диэлектрика используются керамические пластины.

Керамические конденсаторы отличаются небольшой емкостью – от одного пФ до нескольких десятков мкФ.

Керамика имеет пьезоэлектрический эффект (способность диэлектрика поляризоваться под воздействием механических усилий), поэтому некоторые виды этих конденсаторов обладают микрофонным эффектом. Это нежелательное явление, при котором часть электроцепи воспринимает вибрации, как микрофон, что становится причиной помех.

Бумажные и металлобумажные конденсаторы

В качестве диэлектрика в этих конденсаторах используется бумага, часто промасленная. Устройства с промасленной бумагой отличаются большими размерами. Модели с непромасленной бумагой более компактны, но они имеют существенный недостаток – увеличивают энергопотери под воздействием влаги даже в герметичной упаковке. В последнее время эти детали используются редко.

Основные параметры конденсаторов

Емкость

Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.

Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.

Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.

Удельная емкость

Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.

Плотность энергии

Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.

Номинальное напряжение

Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.

Вам понравится:  Как проверить конвертер для спутниковой антенны триколор

Полярность

К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.

Что будет, если перепутать полярность конденсатора? Обычно в этом случае приборы выходят из строя. Это происходит из-за химического разрушения диэлектрика, которое вызывает рост силы тока, вскипание электролита и, как следствие, вздутие корпуса и вероятный взрыв.

К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.

Паразитные параметры конденсаторов

Конденсаторы, помимо основных характеристик, имеют так называемые «паразитные параметры», которые искажают рабочие свойства колебательного контура. Их необходимо учитывать при проектировании схемы.

К таким параметрам относятся собственное сопротивление и индуктивность, которые разделяются на следующие составляющие:

  • Электрическое сопротивление изоляции (r), которое определяется по формуле: r = U/Iут, в которой U – напряжение источника питания, Iут – ток утечки.
  • Эквивалентное последовательное сопротивление (ЭПС, англ. ESR). Эта величина зависит от электрического сопротивления материала обкладок, выводов, контактов между ними, потерями в диэлектрическом слое. ЭПС возрастает с ростом частоты тока, подаваемого на накопитель. В большинстве случаев эта характеристика не принципиальна. Исключение составляют электролитические накопители, устанавливаемые в фильтрах импульсных блоков питания.
  • Эквивалентная последовательная индуктивность – L. На низких частотах этот параметр, обусловленный собственной индуктивностью обкладок и выводов, не учитывается.

К паразитным параметрам также относится Vloss – незначительная величина, выражаемая в процентах, которая показывает, насколько падает напряжение сразу после прекращения зарядки конденсатора.

Обозначение конденсаторов на схеме

На чертежах конденсатор с постоянной емкостью обозначают двумя параллельными черточками — обкладками. Их подписывают буквой «C». Рядом с буквой ставят порядковый номер элемента на схеме и значение емкости в пФ или мкФ.

В конденсаторах переменной емкости параллельные черточки перечеркиваются диагональной чертой со стрелкой. Подстроечные модели обозначаются двумя параллельными линиями, перечеркнутыми диагональной чертой с черточкой на конце. На обозначении полярных конденсаторов указывается положительно заряженная обкладка.

Обозначение по ГОСТ 2.728-74 Описание
Конденсатор постоянной ёмкости
Поляризованный (полярный) конденсатор
Подстроечный конденсатор переменной ёмкости
Варикап

Особенности соединения нескольких конденсаторов в цепи

Соединение нескольких конденсаторов между собой может быть последовательным или параллельным.

Последовательное

Последовательное соединение позволяет подавать на обкладки большее напряжение, чем на отдельно стоящую деталь. Напряжение распределяется в зависимости от емкости каждого накопителя. Если емкости деталей равны, то напряжение распределяется поровну.

Получаемая емкость в такой цепи находится по формуле:

Если провести вычисления, то станет понятно, что увеличение напряжения в цепи достигается существенным падением емкости. Например, если в цепь подсоединить последовательно два конденсатора емкостью 10 мкФ, то общая емкость будет равна всего 5 мкФ.

Параллельное

Это наиболее распространенный на практике способ, позволяющий увеличить общую емкость в схеме. Параллельное соединение позволяет создать один большой конденсатор с суммарной площадью проводящих пластин. Общая емкость системы представляет собой сумму емкостей соединенных деталей.

Напряжение на всех элементах будет одинаковым.

Маркировка конденсаторов

В маркировке конденсатора, независимо от его типа, присутствуют два обязательных параметра – емкость и номинальное напряжение. Наиболее распространена цифровая маркировка, указывающая величину сопротивления. В ней используется три или четыре цифры.

Кратко суть трехфциферной маркировки: первые две цифры, находящиеся слева, указывают значение емкости в пикофарадах. Самая правая цифра показывает, сколько нулей надо прибавить к стоящим слева цифрам. Результат получается в пикофарадах. Пример: 154 = 15х104 пФ. На конденсаторах зарубежного производства пФ обозначаются как mmf.

В кодовом обозначении с четырьмя цифрами емкость в пикофарадах обозначают первые три цифры, а четвертая указывает на количество нулей, которые требуется добавить. Например: 2353=235х103 пФ.

Для обозначения емкости также может применяться буквенно-цифровая маркировка, содержащая букву R, которая указывает место установки десятичной запятой. Например, 0R8=0,8 пФ.

На корпусе значение напряжения указывается числом, после которого ставятся буквы: V, WV (что означает «рабочее напряжение»). Если указание на допустимое напряжение отсутствует, то конденсатор может использоваться только в низковольтных цепях.

Помимо емкости и напряжения, на корпусе могут указываться и другие характеристики детали:

  • Материал диэлектрика. Б – бумага, С – слюда, К – керамика.
  • Степень защиты от внешних воздействий. Г – герметичное исполнение, О – опрессованный корпус.
  • Конструкция. М – монолит, Б – бочонок, Д – диск, С – секционный вариант.
  • Режим по току. И – импульсный, У – универсальный, Ч – только постоянный ток, П – переменный/постоянный.

Как проверить работоспособность конденсатора

Для проверки конденсатора на работоспособность используют мультиметр. Прежде чем проверить накопитель, необходимо определить, какой именно прибор находится в схеме – полярный (электролитический) или неполярный.

Проверка полярного конденсатора

При проверке полярного конденсатора необходимо соблюдать правильную полярность подключения щупов: плюсовой должен быть прижат к плюсовой ножке, минусовой – к минусу. Если вы перепутаете полярность, конденсатор выйдет из строя.

После выпайки детали ее кладут на свободное пространство. Мультиметр включают в режим измерения сопротивления («прозвонки»).

Щупами дотрагиваются до выводов прибора с соблюдением полярности. Правильная ситуация, когда на дисплее появляется первое значение, которое начинает постепенно расти. Максимальное значение, которое должно быть достигнуто для исправного устройства, – 1. Если вы только прикоснулись щупами к выводам, а на экране появилась сразу цифра 1, значит, прибор неисправен. Появление на экране «0» означает, что внутри детали произошло короткое замыкание.

Проверка неполярного конденсатора

В этом случае проверка предельно простая. Диапазон измерений выставляют на отметку 2 МОм. Щупы присоединяют к выводам конденсатора в любом порядке. Полученное значение должно превышать двойку. Если на дисплее высвечивается значение менее 2 МОм, то деталь неисправна.

Как зарядить и разрядить конденсатор

Для зарядки накопителя его подсоединяют к источнику постоянного тока. Зарядка прекращается, когда напряжение источника питания сравнивается по величине с напряжением на обкладках.

Разрядка конденсатора может понадобиться для безопасной разборки бытовых приборов и электронных устройств. Накопители электронных устройств разряжают с помощью обычной диэлектрической отвертки. Для разрядки крупных накопителей, которые устанавливаются в бытовых приборах, необходимо собрать специальное разрядное устройство.

Источник

Оцените статью
Частотные преобразователи
Adblock
detector