Вывод заряда плоского конденсатора

Энергия плоского конденсатора

Любой конденсатор — система, которая может запасать энергию в виде заряда, сохранённого на обкладках конденсатора. Попробуем просчитать энергию плоского конденсатора.

Для зарядки конденсатора нужно совершить работу. Эту работу за нас совершает электрическое поле. Энергия заряженного конденсатора в идеальном случае численно равна работе электростатического поля:

  • где
    • — энергия конденсатора,
    • — работа поля,
    • — заряд конденсатора,
    • — напряжённость поля конденсатора,
    • — расстояние между обкладками конденсатора.

Напряжённость поля внутри конденсатора можем выразить в виде:

(2)

  • где
    • — диэлектрическая проницаемость среды (параметр, характеризующий способность среды проводить электрическое поле). Данный параметр является табличным.
    • — электрическая постоянная ( Ф/м),
    • — площадь обкладок конденсаторов.

Однако при зарядке конденсатора заряд необходимо загнать только на одну пластину, таким образом, напряжённость нужно брать только от одной пластины:

(3)

Подставим (3) в (1):

(4)

Вспомним электроёмкость плоского конденсатора:

(5)

(6)

Подставим (6) в (4):

Соотношение (7) можно адаптировать под условия задачи, используя определение электроёмкости:

Тогда подставим (8) в (7):

Или, выделив из (8) и подставив в (7), получим:

Тогда, совместив все формы записи энергии:

  • где
    • — энергия конденсатора,
    • — заряд конденсатора,
    • — электроёмкость конденсатора,
    • — напряжение на конденсаторе.

Вывод: Для задачи с энергией конденсатора достаточно выбрать форму записи энергии (11), исходя из условий задачи.

Источник

Учебники

Журнал «Квант»

Общие

Содержание

Электроемкость

  • Электроемкость характеризует способность проводников или системы из нескольких проводников накапливать электрические заряды, а, следовательно, и электроэнергию, которая в дальнейшем может быть использована, например, при фотосъемке (вспышка) и т.д.
  • Еще в середине XVIII в. считалось, что электричество — это особая жидкость, содержащаяся в любом заряженном теле. Если заряд тела уменьшался, то это объясняли «испарением» этой жидкости. Для уменьшения «испарения» (сохранения заряда) предлагали поместить заряженное тело в какую-нибудь емкость — электроемкость.

Различают электроемкость уединенного проводника, системы проводников (в частности, конденсаторов).

Электроемкость уединенного проводника

  • Уединенным называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния.
  • Электроемкость уединенного проводника — физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу:

\(

В СИ единицей электроемкости является фарад (Ф).

  • 1 Ф — это электроемкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл.

Поскольку 1 Ф очень большая единица емкости, применяют дольные единицы:

1 пФ (пикофарад) = 10 -12 Ф, 1 нФ (нанофарад) = 10 -9 Ф, 1 мкФ (микрофарад) = 10 -6 Ф и т.д.

Электроемкость проводника не зависит от рода вещества и заряда, но зависит от его формы и размеров, а также от наличия вблизи диэлектрика.

Вам понравится:  Портативная антенна mfj 1620t

Если уединенным проводником является заряженная сфера, то потенциал поля на ее поверхности

где R — радиус сферы, ε — диэлектрическая проницаемость среды, в которой находится проводник. Тогда электроемкость уединенного сферического проводника

C = \dfrac<\varphi>= 4 \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot R = \dfrac<\varepsilon \cdot R>.\)

  • Электроемкость сферы размерами с Землю равна всего 709 мкФ. Электроемкость сферы равна 1 Ф, если радиус сферы в 1400 раз больше радиуса Земли, т.е. R = 9⋅10 12 м.

Электроемкость двух проводников

Обычно на практике имеют дело с двумя и более проводниками. Рассмотрим два проводника произвольной формы, находящиеся в однородном диэлектрике. Сообщим им заряды +q и –q. При этом между проводниками установится некоторая разность потенциалов (напряжение): φ1 – φ2 = U.

Эксперимент показывает, что увеличение заряда каждого проводника, например, в 2 раза приводит к увеличению напряжения между ними также в 2 раза, т.е. отношение \(\dfrac\) для данной пары проводника остается постоянным:

\(\dfrac= \dfrac= \ldots = const = C.\)

  • Электроемкость двух проводника — физическая величина, равная отношению электрического заряда одного из проводников к разности потенциалов (напряжению) между ними

\(

Электроемкость двух проводников зависит от формы и размеров проводников, от их взаимного расположения и относительной диэлектрической проницаемости среды, заполняющей пространство между ними.

Конденсаторы

Для практического использования электрической энергии необходимо уметь ее накапливать. Для этого используют специальные устройства — конденсаторы.

  • Конденсаторы — это устройства, которые состоят из двух или более проводников, разделенных тонким слоем диэлектрика.

Проводники, из которых состоит конденсатор, называются обкладками.

Как правило, при зарядке конденсатора заряды его обкладок равны по величине и противоположны по знаку. Под зарядом конденсатора понимают значение заряда положительно заряженной обкладки.

  • Термин «конденсатор» от латинского слова condensare — сгущать ввел А.Вольта (итальянский физик) в 1782 г. Первые электрические конденсаторы были изготовлены Э.Клейстом и П. Ван Мушенбреком в 1745 г. По имени города Лейдена, где работал Мушенбрек, французкий физик Жан Нолле назвал их лейденскими банками.

При небольших размерах конденсатор отличается значительной емкостью, не зависящей от наличия вблизи него других зарядов или проводников.

  • Электроемкостью конденсатора называют физическую величину, численно равную отношению заряда конденсатора к разности потенциалов между его обкладками:

\(

C = \dfrac qU .\)

  • Из этой формулы видно, что чем больше напряжение между обкладками конденсатора, тем больше на них заряд. Но для каждого конденсатора существует предельное (максимальное) напряжение, выше которого диэлектрик начнет разрушаться. При этом заряды обкладок конденсатора мгновенно нейтрализуются, происходит пробой, т.е. конденсатор выходит из строя.

Виды конденсаторов

Конденсаторы можно классифицировать по следующим признакам и свойствам:

  • по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;
  • по типу диэлектрика (рис. 1) —бумажные (а), воздушные (б), слюдяные, керамические, электролитические (в) и т.д.;
  • по рабочему напряжению — низковольтные (напряжение пробоя до 100 В) и высоковольтные (выше 100 В);
  • по возможности изменения своей емкости — постоянной емкости (см. рис. 1, а, в), переменной емкости (см. рис. 1, б), подстроечные (рис. 2).

    Источник

    Плоский конденсатор. Заряд и емкость конденсатора.

    Наряду с резисторами одними из наиболее часто используемых электронных компонентов являются конденсаторы. И в этой статье мы разберемся, из чего они состоят, как работают и для чего применяются 👍 В первую очередь, рассмотрим устройство и принцип работы, а затем плавно перейдем к основным свойствам и характеристикам — заряду, энергии и, конечно же, емкости конденсатора.

    Плоский конденсатор.

    Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:

    Такое устройство называется плоским конденсатором, а пластины — обкладками конденсатора. Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

    А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит.

    Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:

    Каждая из обкладок конденсатора в отдельности создает электрическое поле:

    • положительно заряженная пластина ( +q ) создает поле, напряженность которого равна E_
    • отрицательно заряженная пластина ( -q ) создает поле, напряженность которого равна E_

    Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:

    Здесь \sigma — это поверхностная плотность заряда: \sigma = \frac , а \varepsilon — диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:

    Но направления векторов разные — внутри конденсатора вектора направлены в одну сторону, а вне — в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:

    Соответственно, вне конденсатора (слева и справа от обкладок) поля пластин компенсируют друг друга и результирующая напряженность равна 0.

    Процессы зарядки и разрядки конденсаторов.

    С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

    Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что будет происходить?

    Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника. Из-за этого на обкладке возникнет недостаток отрицательно заряженных частиц, и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора. В результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной.

    Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную разность потенциалов. Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока. После этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

    При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:

    В данном случае по цепи начнет протекать ток разряда конденсатора, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Именно так происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию. Как видите, здесь нет ничего сложного.

    Емкость и энергия конденсатора.

    Важнейшей характеристикой является электрическая емкость конденсатора. Это физическая величина, которая определяется как отношение заряда q одного из проводников к разности потенциалов между проводниками:

    Емкость конденсатора изменяется в Фарадах, но величина 1 Ф является неимоверно большой, поэтому чаще всего используются микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ). А поскольку мы уже вывели формулу для расчета напряженности, то давайте выразим напряжение на конденсаторе следующим образом:

    Здесь у нас d — это расстояние между пластинами конденсатора, а q — заряд конденсатора. Подставим эту формулу в выражение для емкости:

    Если в качестве диэлектрика выступает воздух, то во всех формулах можно подставить \varepsilon = 1 . Для запасенной же энергии конденсатора справедливы следующие выражения:

    Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение. Это такая величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

    Итак, резюмируем — сегодня рассмотрели основные свойства конденсаторов, их устройство и характеристики, так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений и маркировку.

    Источник

Оцените статью
Частотные преобразователи
Adblock
detector